Patents by Inventor Jingang Su

Jingang Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9337030
    Abstract: A co-sputter technique is used to deposit In—Ga—Zn—O films using PVD. The films are deposited in an atmosphere including both oxygen and argon. A heater setpoint of about 300 C results in a substrate temperature of about 165 C. One target includes an alloy of In, Ga, Zn, and O with an atomic ratio of In:Ga:Zn of about 1:1:1. The second target includes a compound of zinc oxide. The films exhibit the c-axis aligned crystalline (CAAC) phase in an as-deposited state, without the need of a subsequent anneal treatment.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: May 10, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Seon-Mee Cho, Stuart Brinkley, Anh Duong, Majid Gharghi, Sang Lee, Minh Huu Le, Karl Littau, Jingang Su
  • Patent number: 9297775
    Abstract: Barrier layers, barrier stacks, and seed layers for small-scale interconnects (e.g., copper) are combinatorially screened using test structures sputtered or co-sputtered through apertures of varying size. Various characteristics (e.g., resistivity, crystalline morphology, surface roughness) related to conductivity, diffusion blocking, and adhesion are measured before and/or after annealing and compared to arrive at materials and process parameters for low diffusion with high conductivity through the interconnect. Example results show that some formulations of tantalum-titanium barriers may replace thicker tantalum/tantalum-nitride stacks, in some cases with a Cu—Mn seed layer between the Ta—Ti and copper.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: March 29, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Edwin Adhiprakasha, Sean Barstow, Ashish Bodke, Zhendong Hong, Usha Raghuram, Karthik Ramani, Vivian Ryan, Jingang Su, Xunyuan Zhang
  • Publication number: 20150338362
    Abstract: Barrier layers, barrier stacks, and seed layers for small-scale interconnects (e.g., copper) are combinatorially screened using test structures sputtered or co-sputtered through apertures of varying size. Various characteristics (e.g., resistivity, crystalline morphology, surface roughness) related to conductivity, diffusion blocking, and adhesion are measured before and/or after annealing and compared to arrive at materials and process parameters for low diffusion with high conductivity through the interconnect. Example results show that some formulations of tantalum-titanium barriers may replace thicker tantalum/tantalum-nitride stacks, in some cases with a Cu—Mn seed layer between the Ta—Ti and copper.
    Type: Application
    Filed: May 23, 2014
    Publication date: November 26, 2015
    Applicant: Intermolecular Inc.
    Inventors: Edwin Adhiprakasha, Sean Barstow, Ashish Bodke, Zhendong Hong, Usha Raghuram, Karthik Ramani, Vivian Ryan, Jingang Su, Xunyuan Zhang
  • Publication number: 20150279670
    Abstract: A co-sputter technique is used to deposit In—Ga—Zn—O films using PVD. The films are deposited in an atmosphere including both oxygen and argon. A heater setpoint of about 300 C results in a substrate temperature of about 165 C. One target includes an alloy of In, Ga, Zn, and O with an atomic ratio of In:Ga:Zn of about 1:1:1. The second target includes a compound of zinc oxide. The films exhibit the c-axis aligned crystalline (CAAC) phase in an as-deposited state, without the need of a subsequent anneal treatment.
    Type: Application
    Filed: November 20, 2014
    Publication date: October 1, 2015
    Inventors: Seon-Mee Cho, Stuart Brinkley, Anh Duong, Majid Gharghi, Sang Lee, Minh Huu Le, Karl Littau, Jingang Su
  • Publication number: 20150184298
    Abstract: Apparatus and methods for depositing materials on a plurality of site-isolated regions on a substrate are provided. The deposition uses PECVD or PEALD. The apparatus include an inner chamber with an aperture and barrier that can be used to isolate the regions during the deposition and prevent the remaining portions of the substrate from being exposed to the deposition process. The process parameters for the deposition process are varied among the site-isolate regions in a combinatorial manner.
    Type: Application
    Filed: March 17, 2015
    Publication date: July 2, 2015
    Inventors: ShouQian Shao, Chi-I Lang, Jingang Su
  • Patent number: 9023438
    Abstract: Apparatus and methods for depositing materials on a plurality of site-isolated regions on a substrate are provided. The deposition uses PECVD or PEALD. The apparatus include an inner chamber with an aperture and barrier that can be used to isolate the regions during the deposition and prevent the remaining portions of the substrate from being exposed to the deposition process. The process parameters for the deposition process are varied among the site-isolate regions in a combinatorial manner.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: May 5, 2015
    Assignee: Intermolecular, Inc.
    Inventors: ShouQian Shao, Chi-I Lang, Jingang Su
  • Patent number: 8945414
    Abstract: Oxides (e.g., native or thermal silicon oxide) are etched from underlying silicon with a mixture of fluorine and oxygen radicals generated by a remote plasma. The oxygen radicals rapidly oxidize any uncovered bare silicon areas, preventing the pitting that can result from fluorine etching bare silicon more rapidly than it etches the surrounding oxide. A very thin (few ?), highly uniform passivation layer remaining on the silicon after the process may be left in place or removed. An oxygen-impermeable layer may be formed in-situ immediately afterward to prevent further oxidation. A pre-treatment with oxygen radicals alone fills pores and gaps in the oxide before etching begins.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: February 3, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Jingang Su, Ashish Bodke, Abhijit Pethe, J Watanabe
  • Patent number: 8854067
    Abstract: Methods and structures are described for determining contact resistivities and Schottky barrier heights for conductors deposited on semiconductor wafers that can be combined with combinatorial processing, allowing thereby numerous processing conditions and materials to be tested concurrently. Methods for using multi-ring as well as single-ring CTLM structures to cancel parasitic resistance are also described, as well as structures and processes for inline monitoring of properties.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: October 7, 2014
    Assignees: Intermolecular, Inc., GLOBALFOUNDRIES, Inc.
    Inventors: Amol Joshi, Charlene Chen, John Foster, Zhendong Hong, Olov Karlsson, Bei Li, Dipankar Pramanik, Usha Raghuram, Mark Victor Raymond, Jingang Su, Bin Yang
  • Publication number: 20140183036
    Abstract: Methods and systems for in situ measuring sputtering target erosion are disclosed. The emission of material from the sputtering target is stopped, a distance sensor is scanned across a radial line on the sputtering target. The sputtering chamber contains a controlled environment separate and distinct from the environment outside the chamber, and the controlled environment is maintained during the scanning The resulting distance data is converted into a surface profile of the sputtering target. The accuracy of the surface profile can be less than about ±1 ?m. The distance sensor is protected from deposition of the material from the sputtering target. End-of-life for a sputtering target can be determined by obtaining a surface profile of the sputtering target at regular intervals and replacing the sputtering target when the thinnest location on the target as measured by the surface profile is below a predetermined threshold.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Applicant: Intermolecular, Inc.
    Inventors: ShouQian Shao, Kent Riley Child, Jingang Su
  • Publication number: 20140174918
    Abstract: A sputter gun is provided. The sputter gun includes a target and a first plate coupled to a surface of the target. A first magnet is disposed over a second magnet. A second plate coupled to a surface of the first magnet and a gap is defined between a surface of the second magnet and a surface of the first plate. A fluid inlet and a fluid outlet are disposed above a surface of the first magnet. A restriction bar is coupled to the second plate, wherein the restriction bar is configured to prevent a flow path of fluid through the first inlet to the second inlet unless the fluid traverses the gap defined between a surface of the second magnet and a surface of the first plate. Alternative configurations of the sputter gun are included.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Hong Sheng Yang, Kent Riley Child, Chi-I Lang, Jingang Su, Danny Wang
  • Publication number: 20140170335
    Abstract: Apparatus and methods for depositing materials on a plurality of site-isolated regions on a substrate are provided. The deposition uses PECVD or PEALD. The apparatus include an inner chamber with an aperture and barrier that can be used to isolate the regions during the deposition and prevent the remaining portions of the substrate from being exposed to the deposition process. The process parameters for the deposition process are varied among the site-isolate regions in a combinatorial manner.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Applicant: Intermolecular, Inc.
    Inventors: ShouQian Shao, Chi-I Lang, Jingang Su
  • Publication number: 20140134849
    Abstract: An apparatus that includes a base, a sidewall extending from the base, and a lid disposed over a top of the sidewall is provided. A plasma generating source extends through a surface of the lid. A rotatable substrate support is disposed within the chamber above a surface of the base, the rotatable substrate support operable to vertically translate from the base to the lid. A first fluid inlet extends into a first surface of the sidewall and a second fluid inlet extends into a second surface of the sidewall. The plasma generating source provides a plasma activated species to a region of a surface of a substrate supported on the rotatable substrate support and a fluid delivered proximate to the region from one of the first or the second fluid inlet interacts with the plasma activated species to deposit a layer of material over the region.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Sandip Niyogi, Owen Ho Yin Fong, Sunil Shanker, ShouQian Shao, Jingang Su, J. Watanabe, Wenxian Zhu
  • Publication number: 20140055152
    Abstract: Methods and structures are described for determining contact resistivities and Schottky barrier heights for conductors deposited on semiconductor wafers that can be combined with combinatorial processing, allowing thereby numerous processing conditions and materials to be tested concurrently. Methods for using multi-ring as well as single-ring CTLM structures to cancel parasitic resistance are also described, as well as structures and processes for inline monitoring of properties.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicants: Globalfoundries, Inc., Intermolecular, Inc.
    Inventors: Amol Joshi, Charlene Chen, John Foster, Zhendong Hong, Olov Karlsson, Bei Li, Dipankar Pramanik, Usha Raghuram, Mark Victor Raymond, Jingang Su, Bin Yang
  • Publication number: 20130168231
    Abstract: Combinatorial processing of a substrate comprising site-isolated sputter deposition and site-isolated plasma etching can be performed in a same process chamber.
    Type: Application
    Filed: December 31, 2011
    Publication date: July 4, 2013
    Applicant: Intermolecular Inc.
    Inventors: Hong Sheng Yang, Kent Riley Child, Brian Hatcher, ShouQian Shao, Jingang Su, James Tsung
  • Patent number: 6383915
    Abstract: We have discovered particular wetting layer or wetting/barrier layer structures which enable depositing of overlying aluminum interconnect layers having <111> texturing sufficient to provide a Rocking Curve FWHM angle &thgr; of about 1° or less. The aluminum interconnect layer exhibiting a Rocking Curve FWHM angle &thgr; of about 1° or less exhibits excellent electromigration properties. In addition when the aluminum layer is subsequently pattern etched, the sidewalls of the etched aluminum pattern exhibit a surprising reduction in pitting compared with pattern etched aluminum layers exhibiting higher Rocking Curve FWHM angles.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: May 7, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Jingang Su, Gongda Yao, Zhang Xu, Fusen Chen
  • Patent number: 6313042
    Abstract: A method of cleaning a contact area of a semiconductor or metal region on a substrate of an electronic device. First, the contact area is cleaned by exposing the substrate to a plasma that includes fluorine-containing species. Second, the substrate is exposed to a second atmosphere that scavenges fluorine, preferably formed by plasma decomposition of a hydrogen-containing gas. The second atmosphere removes any fluorine residue remaining on the contact area and overcomes any need to include argon sputtering in the cleaning process. Another aspect of the invention is a method of depositing a refractory metal over a contact area of a semiconductor region on a substrate. The contact area is cleaned according to the two-step process of the preceding paragraph. Then a refractory metal is deposited over the contact area. The two-step cleaning process can reduce the electrical resistance between the refractory metal and the semiconductor region.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: November 6, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Barney M. Cohen, Jingang Su, Kenny King-Tai Ngan, Jr-Jyan Chen
  • Patent number: 6149784
    Abstract: A shield for a DC magnetron sputtering reactor, particularly advantageous for reliably igniting the plasma used in sputtering a ferromagnetic material such as cobalt or nickel. The grounded shield includes a slanted portion separated from the beveled periphery of the target by a small gap operating as a dark space. The shield also includes a straight cylindrical portion surrounding the main processing area. The slanted portion is joined to the cylindrical portion at a knee According to one embodiment of the invention, the knee is located greater than 9 mm from the face of the target and at a radial position at least 1 mm inward of the outer periphery of the target face.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: November 21, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Jingang Su, Nelson A. Yee, John C. Forster, Kenny King-Tai Ngan, Lisa L. Yang
  • Patent number: 6110836
    Abstract: Native oxides can be removed from a substrate having high aspect ratio openings therein by using a plasma gas precursor mixture of a reactive halogen-containing gas and a carrier gas such as helium. The lightweight ions generated in the plasma react with oxygen to produce very volatile oxygen-containing species that can be readily removed through the exhaust system of the plasma chamber, preventing re-deposition of oxides on the surface of the substrate or on the sidewalls or bottom of the openings. When the substrate is mounted in a plasma chamber having dual power sources that can form a plasma above the substrate and can apply bias to the substrate, tapered openings are formed rapidly that can be readily filled without forming voids.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: August 29, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Barney M. Cohen, Jingang Su, Kenny King-Tai Ngan