Patents by Inventor Jin Geun Yu

Jin Geun Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11728501
    Abstract: A fuel cell includes: an electrolyte layer; a base electrode formed on one side of the electrolyte layer; and a catalyst electrode formed on the other side of the electrolyte layer to be apart from the base electrode with the electrolyte layer interposed therebetween. The catalyst electrode includes: a first electrode portion that covers a part of the electrolyte layer; and a second electrode portion that covers a part of a surface of the first electrode portion to form an electrode portion interface in contact with the first electrode portion.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: August 15, 2023
    Assignee: FOUNDATION FOR RESEARCH AND BUSINESS, SEOUL NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Ji Hwan An, Jeong Woo Shin, Sung Je Lee, Seong Kook Oh, Jin Geun Yu
  • Patent number: 10950432
    Abstract: Provided is a method of depositing a thin film on a pattern structure of a semiconductor substrate, the method including (a) supplying a source gas; (b) supplying a reactive gas; and (c) supplying plasma, wherein the steps (a), (b), and (c) are sequentially repeated on the semiconductor substrate within a reaction space until a desired thickness is obtained, and a frequency of the plasma is a high frequency of 60 MHz or greater.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: March 16, 2021
    Assignee: ASM IP Holding B.V.
    Inventors: Young Hoon Kim, Yong Gyu Han, Dae Youn Kim, Tae Hee Yoo, Wan Gyu Lim, Jin Geun Yu
  • Publication number: 20200365925
    Abstract: A fuel cell includes: an electrolyte layer; a base electrode formed on one side of the electrolyte layer; and a catalyst electrode formed on the other side of the electrolyte layer to be apart from the base electrode with the electrolyte layer interposed therebetween. The catalyst electrode includes: a first electrode portion that covers a part of the electrolyte layer; and a second electrode portion that covers a part of a surface of the first electrode portion to form an electrode portion interface in contact with the first electrode portion.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 19, 2020
    Inventors: Ji Hwan AN, Jeong Woo SHIN, Sung Je LEE, Seong Kook OH, Jin Geun YU
  • Publication number: 20200303180
    Abstract: Provided is a method of depositing a thin film on a pattern structure of a semiconductor substrate, the method including (a) supplying a source gas; (b) supplying a reactive gas; and (c) supplying plasma, wherein the steps (a), (b), and (c) are sequentially repeated on the semiconductor substrate within a reaction space until a desired thickness is obtained, and a frequency of the plasma is a high frequency of 60 MHz or greater.
    Type: Application
    Filed: June 9, 2020
    Publication date: September 24, 2020
    Inventors: Young Hoon Kim, Yong Gyu Han, Dae Youn Kim, Tae Hee Yoo, Wan Gyu Lim, Jin Geun Yu
  • Patent number: 10714335
    Abstract: Provided is a method of depositing a thin film on a pattern structure of a semiconductor substrate, the method including (a) supplying a source gas; (b) supplying a reactive gas; and (c) supplying plasma, wherein the steps (a), (b), and (c) are sequentially repeated on the semiconductor substrate within a reaction space until a desired thickness is obtained, and a frequency of the plasma is a high frequency of 60 MHz or greater.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: July 14, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Young Hoon Kim, Yong Gyu Han, Dae Youn Kim, Tae Hee Yoo, Wan Gyu Lim, Jin Geun Yu
  • Publication number: 20190115206
    Abstract: Provided is a method of depositing a thin film on a pattern structure of a semiconductor substrate, the method including (a) supplying a source gas; (b) supplying a reactive gas; and (c) supplying plasma, wherein the steps (a), (b), and (c) are sequentially repeated on the semiconductor substrate within a reaction space until a desired thickness is obtained, and a frequency of the plasma is a high frequency of 60 MHz or greater.
    Type: Application
    Filed: April 10, 2018
    Publication date: April 18, 2019
    Inventors: Young Hoon Kim, Yong Gyu Han, Dae Youn Kim, Tae Hee Yoo, Wan Gyu Lim, Jin Geun Yu