Patents by Inventor Jinghao Sheng
Jinghao Sheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12166469Abstract: A cavity structure of a bulk acoustic resonator and a manufacturing process. The cavity structure comprises a substrate and a cavity formed on the substrate, a support layer is arranged on the substrate to form the cavity in a surrounding manner, a release channel in communication with the cavity is formed above the substrate in a same layer with the cavity, and the release channel extends, in parallel to the substrate, in a peripheral area of the cavity. There is no need to manufacture a release hole, which simplifies the manufacturing process of the resonator, thereby avoiding weakening the performance of the resonator due to damage to the structure of the piezoelectric layer around the electrode layer when manufacturing the release hole.Type: GrantFiled: June 29, 2020Date of Patent: December 10, 2024Assignee: JWL (ZHEJIANG) SEMICONDUCTOR CO., LTDInventors: Linping Li, Jinghao Sheng, Zhou Jiang
-
Patent number: 12113503Abstract: A manufacturing process for a bulk acoustic resonator, comprising: making an acoustic mirror on a substrate; making a bottom electrode layer for covering the acoustic mirror on the substrate; performing chemical treatment on a peripheral part of the bottom electrode layer to form a modified layer, which surrounds the bottom electrode layer; making a piezoelectric layer on the bottom electrode layer; and making a top electrode layer on the piezoelectric layer. A bulk acoustic resonator, comprising: a substrate, an acoustic mirror formed on the substrate, and a bottom electrode layer, a piezoelectric layer and a top electrode layer that are sequentially formed on the substrate with the acoustic mirror, chemical treatment is performed on a part of the bottom electrode layer close to an edge of the acoustic mirror to form a modified layer. Parasitic oscillation of the resonator is inhibited, and wiring of a top electrode is greatly simplified.Type: GrantFiled: September 27, 2020Date of Patent: October 8, 2024Assignee: HANGZHOU XINGHE TECHNOLOGY CO., LTD.Inventors: Linping Li, Jinghao Sheng, Zhou Jiang
-
Patent number: 11973484Abstract: An acoustic resonator with a reinforcing structure is provided according to the present disclosure. The acoustic resonator includes a substrate and a cavity formed on the substrate, a piezoelectric layer is arranged above the substrate and an opening passing through the piezoelectric layer is formed in a peripheral region of the piezoelectric layer. The reinforcing structure includes a reinforcing layer, part of the reinforcing layer is formed at the edge of the opening with being fitted to the edge, to reinforce a resonant functional layer near the edge of the opening, which can reduce a change in stress of the piezoelectric layer and the lower electrode near the edge of the opening after the cavity is released, so that the piezoelectric layer and the lower electrode do not easily collapse due to stress, thereby ensuring the performance of a device. A method for manufacturing the same is further provided.Type: GrantFiled: December 19, 2022Date of Patent: April 30, 2024Assignee: HANGZHOU XINGHE TECHNOLOGY CO., LTD.Inventors: Linping Li, Jinghao Sheng, Zhou Jiang
-
Patent number: 11901872Abstract: A thin film bulk acoustic resonator and a method for manufacturing the same. The thin film bulk acoustic resonator comprises a bottom electrode layer, a piezoelectric layer, and a top electrode layer, which are disposed on a substrate in which an acoustic reflection structure is located, where a portion which is of the piezoelectric layer and corresponds to a boundary of the acoustic reflection structure is depolarized to form a depolarized portion. The method comprises providing a bottom electrode layer on a substrate to cover an acoustic reflection structure which is formed or to be formed on the substrate; providing a piezoelectric layer on the bottom electrode layer; depolarizing a portion, which is of the piezoelectric layer and corresponds to a boundary of the acoustic reflection structure, to form a depolarized portion; and providing a top electrode layer on the piezoelectric layer.Type: GrantFiled: June 28, 2020Date of Patent: February 13, 2024Assignee: JWL (ZHEJIANG) SEMICONDUCTOR CO., LTD.Inventors: Linping Li, Jinghao Sheng, Zhou Jiang
-
Patent number: 11881839Abstract: An acoustic resonator assembly and a filter are disclosed. The acoustic resonator assembly includes at least two acoustic resonators vertically connected to each other. The acoustic resonator includes: an acoustic mirror, a bottom electrode layer, a piezoelectric layer, and a top electrode layer that are arranged on a substrate. An active area of the acoustic resonator is defined by an overlapping area of the acoustic mirror, the bottom electrode layer, the piezoelectric layer, and the top electrode layer. The acoustic resonator further includes a support layer arranged on the substrate or the piezoelectric layer on a periphery of a projection of the acoustic mirror on the substrate. The at least two acoustic resonators are vertically connected to each other through the support layer. The filter significantly reduces the volume and the area of a device, improves design freedom and reduces design difficulty, enhances product performance and greatly reduces costs.Type: GrantFiled: September 22, 2020Date of Patent: January 23, 2024Inventors: Linping Li, Jinghao Sheng, Zhou Jiang
-
Publication number: 20230327643Abstract: An acoustic resonator assembly and a filter are disclosed. The acoustic resonator assembly includes at least two acoustic resonators vertically connected to each other. The acoustic resonator includes: an acoustic mirror, a bottom electrode layer, a piezoelectric layer, and a top electrode layer that are arranged on a substrate. An active area of the acoustic resonator is defined by an overlapping area of the acoustic mirror, the bottom electrode layer, the piezoelectric layer, and the top electrode layer. The acoustic resonator further includes a support layer arranged on the substrate or the piezoelectric layer on a periphery of a projection of the acoustic mirror on the substrate. The at least two acoustic resonators are vertically connected to each other through the support layer. The filter significantly reduces the volume and the area of a device, improves design freedom and reduces design difficulty, enhances product performance and greatly reduces costs.Type: ApplicationFiled: September 22, 2020Publication date: October 12, 2023Inventors: Linping LI, Jinghao SHENG, Zhou JIANG
-
Publication number: 20230327627Abstract: A manufacturing process for a bulk acoustic resonator, comprising: making an acoustic mirror on a substrate; making a bottom electrode layer for covering the acoustic mirror on the substrate; performing chemical treatment on a peripheral part of the bottom electrode layer to form a modified layer, which surrounds the bottom electrode layer; making a piezoelectric layer on the bottom electrode layer; and making a top electrode layer on the piezoelectric layer. A bulk acoustic resonator, comprising: a substrate, an acoustic mirror formed on the substrate, and a bottom electrode layer, a piezoelectric layer and a top electrode layer that are sequentially formed on the substrate with the acoustic mirror, chemical treatment is performed on a part of the bottom electrode layer close to an edge of the acoustic mirror to form a modified layer. Parasitic oscillation of the resonator is inhibited, and wiring of a top electrode is greatly simplified.Type: ApplicationFiled: September 27, 2020Publication date: October 12, 2023Inventors: Linping LI, Jinghao SHENG, Zhou JIANG
-
Patent number: 11770920Abstract: Disclosed is an EMI shielding material. The EMI shielding material includes a resin material and metal particles mixed with each other, and the surface of the metal particles has an insulating protective layer. Further disclosed is a communication module product, including a module element arranged on a substrate, and the periphery of the module element that requires EMI shielding is filled with said shielding material. Further disclosed is an EMI shielding process, including the following steps: a. preparing a communication module on which a module element is provided; and b. applying said shielding material to a region of the module element that needs to be EMI shielded on the communication module. The shielding material shields a chip region in a wrapping manner, that is, the shielding material wraps and shields all six surfaces or six directions of the chip, and provides shielding between chips.Type: GrantFiled: September 11, 2020Date of Patent: September 26, 2023Assignee: HUZHOU JIANWENLU TECHNOLOGY CO., LTD.Inventors: Linping Li, Jinghao Sheng, Zhou Jiang
-
Patent number: 11742824Abstract: A bulk acoustic resonator having a heat dissipation structure, and a fabrication process are provided according to the present application. The bulk acoustic resonator includes a substrate, a metal heat dissipation layer formed on the base substrate and provided with an insulating layer on the surface thereof, and a resonance functional layer formed on the insulating layer, where the metal heat dissipation layer and the insulating layer together define a cavity on the substrate, a side wall of the cavity is formed by the insulating layer, and a bottom electrode layer in the resonance function layer covers the cavity.Type: GrantFiled: August 12, 2020Date of Patent: August 29, 2023Inventors: Linping Li, Jinghao Sheng, Zhou Jiang
-
Publication number: 20230238933Abstract: A cavity structure of a bulk acoustic resonator and a manufacturing process. The cavity structure comprises a substrate and a cavity formed on the substrate, a support layer is arranged on the substrate to form the cavity in a surrounding manner, a release channel in communication with the cavity is formed above the substrate in a same layer with the cavity, and the release channel extends, in parallel to the substrate, in a peripheral area of the cavity. There is no need to manufacture a release hole, which simplifies the manufacturing process of the resonator, thereby avoiding weakening the performance of the resonator due to damage to the structure of the piezoelectric layer around the electrode layer when manufacturing the release hole.Type: ApplicationFiled: June 29, 2020Publication date: July 27, 2023Inventors: Linping LI, Jinghao SHENG, Zhou JIANG
-
Publication number: 20230216472Abstract: An acoustic resonator with a reinforcing structure is provided according to the present disclosure. The acoustic resonator includes a substrate and a cavity formed on the substrate, a piezoelectric layer is arranged above the substrate and an opening passing through the piezoelectric layer is formed in a peripheral region of the piezoelectric layer. The reinforcing structure includes a reinforcing layer, part of the reinforcing layer is formed at the edge of the opening with being fitted to the edge, to reinforce a resonant functional layer near the edge of the opening, which can reduce a change in stress of the piezoelectric layer and the lower electrode near the edge of the opening after the cavity is released, so that the piezoelectric layer and the lower electrode do not easily collapse due to stress, thereby ensuring the performance of a device. A method for manufacturing the same is further provided.Type: ApplicationFiled: December 19, 2022Publication date: July 6, 2023Inventors: Linping LI, Jinghao SHENG, Zhou JIANG
-
Patent number: 11695386Abstract: A solidly mounted resonator having an electromagnetic shielding structure and a method for manufacturing the same. The solidly mounted resonator includes: a substrate; an acoustic-wave reflecting layer formed on the substrate; a resonance function layer formed on the acoustic-wave reflecting layer; and a metal shielding wall formed on the substrate, wherein the metal shielding wall surrounds an effective region in the acoustic-wave reflecting layer and the resonance function layer. The electromagnetic shielding structure is formed simultaneously with the resonator, and it is not necessary to provide an additional electromagnetic shielding device. An influence of an external or internal electromagnetic interference source on the resonator is avoided while ensuring a small dimension and a high performance of the resonator.Type: GrantFiled: August 12, 2020Date of Patent: July 4, 2023Inventors: Linping Li, Jinghao Sheng, Zhou Jiang
-
Publication number: 20230208383Abstract: A thin film bulk acoustic resonator and a method for manufacturing the same. The thin film bulk acoustic resonator comprises a bottom electrode layer, a piezoelectric layer, and a top electrode layer, which are disposed on a substrate in which an acoustic reflection structure is located, where a portion which is of the piezoelectric layer and corresponds to a boundary of the acoustic reflection structure is depolarized to form a depolarized portion. The method comprises providing a bottom electrode layer on a substrate to cover an acoustic reflection structure which is formed or to be formed on the substrate; providing a piezoelectric layer on the bottom electrode layer; depolarizing a portion, which is of the piezoelectric layer and corresponds to a boundary of the acoustic reflection structure, to form a depolarized portion; and providing a top electrode layer on the piezoelectric layer.Type: ApplicationFiled: June 28, 2020Publication date: June 29, 2023Inventors: Linping LI, Jinghao SHENG, Zhou JIANG
-
Publication number: 20230076029Abstract: A bulk acoustic resonator having a heat dissipation structure, and a fabrication process are provided according to the present application. The bulk acoustic resonator includes a substrate, a metal heat dissipation layer formed on the base substrate and provided with an insulating layer on the surface thereof, and a resonance functional layer formed on the insulating layer, where the metal heat dissipation layer and the insulating layer together define a cavity on the substrate, a side wall of the cavity is formed by the insulating layer, and a bottom electrode layer in the resonance function layer covers the cavity.Type: ApplicationFiled: August 12, 2020Publication date: March 9, 2023Inventors: Linping LI, Jinghao SHENG, Zhou JIANG
-
Publication number: 20230063980Abstract: A solidly mounted resonator having an electromagnetic shielding structure and a method for manufacturing the same. The solidly mounted resonator includes: a substrate; an acoustic-wave reflecting layer formed on the substrate; a resonance function layer formed on the acoustic-wave reflecting layer; and a metal shielding wall formed on the substrate, wherein the metal shielding wall surrounds an effective region in the acoustic-wave reflecting layer and the resonance function layer. The electromagnetic shielding structure is formed simultaneously with the resonator, and it is not necessary to provide an additional electromagnetic shielding device. An influence of an external or internal electromagnetic interference source on the resonator is avoided while ensuring a small dimension and a high performance of the resonator.Type: ApplicationFiled: August 12, 2020Publication date: March 2, 2023Inventors: Linping LI, Jinghao SHENG, Zhou JIANG
-
Patent number: 11552028Abstract: A method for packaging a chip and a chip packaging structure. A passivation layer is provided on bonding pads of a wafer, a first metal bonding layer is formed on the passivation layer, and a second metal bonding layer is formed on a substrate. The substrate and the wafer are bonded via the first metal bonding layer and the second metal bonding layer, and are packaged as a whole. A first shielding layer is provided on the substrate, and the first shielding layer is in contact with the second metal bonding layer. After the wafer and the substrate are bonded, the wafer is subject to half-cutting to expose the first metal bonding layer. Then, the second shielding layer electrically connected to the first metal bonding layer is formed.Type: GrantFiled: September 25, 2020Date of Patent: January 10, 2023Assignee: HUZHOU JIANWENLU TECHNOLOGY CO., LTD.Inventors: Linping Li, Jinghao Sheng, Zhou Jiang
-
Publication number: 20220418174Abstract: Disclosed is an EMI shielding material. The EMI shielding material comprises a resin material and metal particles mixed with each other, wherein the surface of the metal particles has an insulating protective layer. Further disclosed is a communication module product, comprising a module element arranged on a substrate, wherein the periphery of the module element that requires EMI shielding is filled with said shielding material. Further disclosed is an EMI shielding process, comprising the following steps: a. preparing a communication module on which a module element is provided; and b. applying said shielding material to a region of the module element that needs to be EMI shielded on the communication module. The shielding material can shield a chip region in a wrapping manner, that is, the shielding material can wrap and shield all six surfaces or six directions of the chip, and can provide shielding between chips.Type: ApplicationFiled: September 11, 2020Publication date: December 29, 2022Inventors: Linping LI, Jinghao SHENG, Zhou JIANG
-
Publication number: 20220181269Abstract: Provided are a chip packaging method and a chip packaging structure. A passivation layer is provided on a pad of a wafer, a first metal bonding layer is then formed on the passivation layer, a second metal bonding layer is formed on a substrate, the substrate and the wafer are bonded and packaged together through bonding of the first metal bonding layer and the second metal bonding layer, a first shielding layer is provided on the substrate, and the first shielding layer is connected to the second metal bonding layer; and after the wafer and the substrate are bonded, semi-cutting is performed on the wafer until the first metal bonding layer is exposed, and a second shielding layer is then formed, and the second shielding layer is electrically connected to the first metal bonding layer, such that an electromagnetic shielding structure jointly composed of the first shielding layer, the second metal bonding layer, the second shielding layer and the first metal bonding layer is obtained.Type: ApplicationFiled: September 25, 2020Publication date: June 9, 2022Inventors: Linping LI, Jinghao SHENG, Zhou JIANG
-
Patent number: 10985120Abstract: Provided are a chip packaging method and a chip packaging structure. The passivation layer is arranged on the pads of the wafer, then the first bonding layer is formed on the passivation layer, and the second bonding layer is formed on the substrate. The substrate and the wafer are bonded and packaged together by bonding the first bonding layer and the second bonding layer. The pads are only used as a conductive structure, not as a bonding layer due to the passivation layer arranged between the pads and the bonding layer. The through silicon via is arranged at the position above the pad and avoiding the bonding layer, so as to connect the functional circuit region between the wafer and the substrate to the outside of the chip packaging structure.Type: GrantFiled: September 29, 2020Date of Patent: April 20, 2021Inventors: Linping Li, Jinghao Sheng, Zhou Jiang
-
Publication number: 20210111135Abstract: Provided are a chip packaging method and a chip packaging structure. The passivation layer is arranged on the pads of the wafer, then the first bonding layer is formed on the passivation layer, and the second bonding layer is formed on the substrate. The substrate and the wafer are bonded and packaged together by bonding the first bonding layer and the second bonding layer. The pads are only used as a conductive structure, not as a bonding layer due to the passivation layer arranged between the pads and the bonding layer. The through silicon via is arranged at the position above the pad and avoiding the bonding layer, so as to connect the functional circuit region between the wafer and the substrate to the outside of the chip packaging structure.Type: ApplicationFiled: September 29, 2020Publication date: April 15, 2021Inventors: Linping LI, Jinghao Sheng, Zhou Jiang