Patents by Inventor Jingmei Liang

Jingmei Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967524
    Abstract: Exemplary methods of forming a semiconductor structure may include forming a first silicon oxide layer overlying a semiconductor substrate. The methods may include forming a first silicon layer overlying the first silicon oxide layer. The methods may include forming a silicon nitride layer overlying the first silicon layer. The methods may include forming a second silicon layer overlying the silicon nitride layer. The methods may include forming a second silicon oxide layer overlying the second silicon layer. The methods may include removing the silicon nitride layer. The methods may include removing the first silicon layer and the second silicon layer. The methods may include forming a metal layer between and contacting each of the first silicon oxide layer and the second silicon oxide layer.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: April 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Praket Prakash Jha, Shuchi Sunil Ojha, Jingmei Liang, Abhijit Basu Mallick, Shankar Venkataraman
  • Patent number: 11804372
    Abstract: A method of depositing a silicon-containing material is disclosed. Some embodiments of the disclosure provide films which fill narrow CD features without a seam or void. Some embodiments of the disclosure provide films which form conformally on features with wider CD. Embodiments of the disclosure also provide superior quality films with low roughness, low defects and advantageously low deposition rates.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: October 31, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jung Chan Lee, Praket P. Jha, Jingmei Liang, Jinrui Guo, Wenhui Li
  • Publication number: 20230187276
    Abstract: Embodiments herein provide for oxygen based treatment of low-k dielectric layers deposited using a flowable chemical vapor deposition (FCVD) process. Oxygen based treatment of the FCVD deposited low-k dielectric layers desirably increases the Ebd to capacitance and reliability of the devices while removing voids.
    Type: Application
    Filed: February 10, 2023
    Publication date: June 15, 2023
    Inventors: Shi YOU, He REN, Naomi YOSHIDA, Nikolaos BEKIARIS, Mehul NAIK, Jay Martin SEAMONS, Jingmei LIANG, Mei-Yee SHEK
  • Patent number: 11615984
    Abstract: Embodiments herein provide for oxygen based treatment of low-k dielectric layers deposited using a flowable chemical vapor deposition (FCVD) process. Oxygen based treatment of the FCVD deposited low-k dielectric layers desirably increases the Ebd to capacitance and reliability of the devices while removing voids.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: March 28, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shi You, He Ren, Naomi Yoshida, Nikolaos Bekiaris, Mehul Naik, Martin Jay Seamons, Jingmei Liang, Mei-Yee Shek
  • Publication number: 20230030436
    Abstract: Embodiments of the present disclosure generally relate to methods for gap fill deposition and film densification on microelectronic devices. The method includes forming an oxide layer containing silicon oxide and having an initial wet etch rate (WER) over features disposed on the substrate, and exposing the oxide layer to a first plasma treatment to produce a treated oxide layer. The first plasma treatment includes generating a first plasma by a first RF source and directing the first plasma to the oxide layer by a DC bias. The method also includes exposing the treated oxide layer to a second plasma treatment to produce a densified oxide layer. The second plasma treatment includes generating a second plasma by top and side RF sources and directing the second plasma to the treated oxide layer without a bias. The densified oxide layer has a final WER of less than one-half of the initial WER.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Inventors: Jung Chan LEE, Mun Kyu PARK, Jun LEE, Euhngi LEE, Kyu-Ha SHIM, Deven Matthew Raj MITTAL, Sungho JO, Timothy MILLER, Jingmei LIANG, Praket Prakash JHA, Sanjay G. KAMATH
  • Publication number: 20220375747
    Abstract: Processing methods disclosed herein comprise forming a nucleation layer and a flowable chemical vapor deposition (FCVD) film on a substrate surface by exposing the substrate surface to a silicon-containing precursor and a reactant. By controlling at least one of a precursor/reactant pressure ratio, a precursor/reactant flow ratio and substrate temperature formation of miniature defects is minimized. Controlling at least one of the process parameters may reduce the number of miniature defects. The FCVD film can be cured by any suitable curing process to form a smooth FCVD film.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 24, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Wenhui Li, Praket P. Jha, Mandar B. Pandit, Man-Ping Cai, Jingmei Liang, Michael Wenyoung Tsiang
  • Patent number: 11469100
    Abstract: A method of post-treating a dielectric film formed on a surface of a substrate includes positioning a substrate having a dielectric film formed thereon in a processing chamber and exposing the dielectric film to microwave radiation in the processing chamber at a frequency between 5 GHz and 7 GHz.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: October 11, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Yong Sun, Praket Prakash Jha, Jingmei Liang, Martin Jay Seamons, DongQing Li, Shashank Sharma, Abhilash J. Mayur, Wolfgang R. Aderhold
  • Publication number: 20220223410
    Abstract: A method of depositing a silicon-containing material is disclosed. Some embodiments of the disclosure provide films which fill narrow CD features without a seam or void. Some embodiments of the disclosure provide films which form conformally on features with wider CD. Embodiments of the disclosure also provide superior quality films with low roughness, low defects and advantageously low deposition rates.
    Type: Application
    Filed: November 9, 2021
    Publication date: July 14, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Jung Chan Lee, Praket P. Jha, Jingmei Liang, Jinrui Guo, Wenhui Li
  • Patent number: 11367614
    Abstract: Methods for forming a smooth ultra-thin flowable CVD film by using a surface treatment on a substrate surface before flowable CVD film deposition improves the uniformity and overall film smoothness. The flowable CVD film can be cured by any suitable curing process to form a smooth flowable CVD film.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: June 21, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jinrui Guo, Jingmei Liang, Praket P. Jha, Li Zhang
  • Publication number: 20220130722
    Abstract: A substrate processing method includes creating a mask on a top surface of a workpiece. A first portion of a gap fill material is overlaid by the mask and a second portion of the gap fill material is exposed through an opening in the mask. The method further includes exposing the workpiece to a plasma. The method further includes performing a first etching of the first portion of the gap fill material to create a first cavity while the second portion of the gap fill material remains in place, depositing a first metal-containing substance in the first cavity, performing a second etching of the second portion of the gap fill material to create a second cavity while the first metal-containing substance remains in place, and depositing a second metal-containing substance in the second cavity.
    Type: Application
    Filed: October 19, 2021
    Publication date: April 28, 2022
    Inventors: Suketu Arun PARIKH, Martin Jay SEAMONS, Jingmei LIANG, Shuchi Sunil OJHA, Tom CHOI, Nitin K. INGLE, Sanjay NATARAJAN
  • Publication number: 20220037147
    Abstract: Provided are methods of depositing a film in high aspect ratio (AR) structures with small dimensions. The method provides flowable deposition for seamless gap-fill, film densification by low temperature inductively coupled plasma (ICP) treatment (<600° C.), optional film curing, and etch back to form a low-k dielectric film having a dielectric constant, k-value less than 3.
    Type: Application
    Filed: July 28, 2021
    Publication date: February 3, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Myungsun Kim, Jingmei Liang, Martin J. Seamons, Michael Stolfi, Benjamin Colombeau
  • Patent number: 11170994
    Abstract: A method of depositing a silicon-containing material is disclosed. Some embodiments of the disclosure provide films which fill narrow CD features without a seam or void. Some embodiments of the disclosure provide films which form conformally on features with wider CD. Embodiments of the disclosure also provide superior quality films with low roughness, low defects and advantageously low deposition rates.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: November 9, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jung Chan Lee, Praket P. Jha, Jingmei Liang, Jinrui Guo, Wenhui Li
  • Patent number: 11170990
    Abstract: Aspects of the disclosure provide a method including depositing an underlayer comprising silicon oxide over a substrate, depositing a polysilicon liner on the underlayer, and depositing an amorphous silicon layer on the polysilicon liner. Aspects of the disclosure provide a device intermediate including a substrate, an underlayer comprising silicon oxide formed over the substrate, a polysilicon liner disposed on the underlayer, and an amorphous silicon layer disposed on the polysilicon liner.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: November 9, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Krishna Nittala, Rui Cheng, Karthik Janakiraman, Praket Prakash Jha, Jinrui Guo, Jingmei Liang
  • Patent number: 11152248
    Abstract: Embodiments disclosed herein relate to cluster tools for forming and filling trenches in a substrate with a flowable dielectric material. In one or more embodiments, a cluster tool for processing a substrate contains a load lock chamber, a first vacuum transfer chamber coupled to the load lock chamber, a second vacuum transfer chamber, a cooling station disposed between the first vacuum transfer chamber and the second vacuum transfer chamber, a factory interface coupled to the load lock chamber, a plurality of first processing chambers coupled to the first vacuum transfer chamber, wherein each of the first processing chambers is a deposition chamber capable of performing a flowable layer deposition, and a plurality of second processing chambers coupled to the second vacuum transfer chamber, wherein each of the second processing chambers is a plasma chamber capable of performing a plasma curing process.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: October 19, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Jingmei Liang, Yong Sun, Jinrui Guo, Praket P. Jha, Jung Chan Lee, Tza-Jing Gung, Mukund Srinivasan
  • Publication number: 20210317580
    Abstract: Embodiments herein provide for oxygen based treatment of low-k dielectric layers deposited using a flowable chemical vapor deposition (FCVD) process. Oxygen based treatment of the FCVD deposited low-k dielectric layers desirably increases the Ebd to capacitance and reliability of the devices while removing voids.
    Type: Application
    Filed: April 14, 2020
    Publication date: October 14, 2021
    Inventors: Shi YOU, He REN, Naomi YOSHIDA, Nikolaos BEKIARIS, Mehul NAIK, Martin Jay SEAMONS, Jingmei LIANG, Mei-Yee SHEK
  • Patent number: 11133177
    Abstract: Embodiments described herein generally related to methods for forming a flowable low-k dielectric layer over a trench formed on a surface of a patterned substrate. The methods include delivering a silicon and carbon containing precursor into a substrate processing region of a substrate processing chamber for a first period of time and a second period of time, flowing an oxygen-containing precursor into a remote plasma region of a plasma source while igniting a remote plasma to form a radical-oxygen precursor, flowing the radical-oxygen precursor into the substrate processing region at a second flow rate after the first period of time has elapsed and during the second period of time, and exposing the silicon and carbon containing dielectric precursor to electromagnetic radiation for a third period of time after the second period of time has elapsed.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: September 28, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Martin Jay Seamons, Michael Wenyoung Tsiang, Jingmei Liang
  • Publication number: 20210280451
    Abstract: Provided are methods of depositing a film in high aspect ratio (AR) structures with small dimensions. The method provides flowable deposition for seamless gap-fill, UV cure for increasing film density, film conversion to silicon oxide at low temperature, and film densification by low temperature inductively coupled plasma (ICP) treatment (<400° C.).
    Type: Application
    Filed: March 4, 2020
    Publication date: September 9, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jung Chan Lee, Praket P. Jha, Jingmei Liang, Shuchi Sunil Ojha
  • Patent number: 11107674
    Abstract: Embodiments described and discussed herein provide methods for depositing silicon nitride materials by vapor deposition, such as by flowable chemical vapor deposition (FCVD), as well as for utilizing new silicon-nitrogen precursors for such deposition processes. The silicon nitride materials are deposited on substrates for gap fill applications, such as filling trenches formed in the substrate surfaces. In one or more embodiments, the method for depositing a silicon nitride film includes introducing one or more silicon-nitrogen precursors and one or more plasma-activated co-reactants into a processing chamber, producing a plasma within the processing chamber, and reacting the silicon-nitrogen precursor and the plasma-activated co-reactant in the plasma to produce a flowable silicon nitride material on a substrate within the processing chamber. The method also includes treating the flowable silicon nitride material to produce a solid silicon nitride material on the substrate.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: August 31, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Lakmal C. Kalutarage, Mark J. Saly, Praket Prakash Jha, Jingmei Liang
  • Patent number: 11090683
    Abstract: Embodiments described herein provide a method of forming a silicon-and-oxygen-containing layer having covalent Si—O—Si bonds by cross-linking terminal silanol groups. The method includes positioning a substrate in a chamber. The substrate has one or more trenches including a width of 10 nanometers (nm) or less, and an aspect ratio of 2:1 or greater. The aspect ratio is defined by a ratio of a depth to the width of the one or more trenches. A silicon-and-oxygen-containing layer is disposed over the one or more trenches. The silicon-and-oxygen-containing layer has terminal silanol groups. The substrate is heated, and the silicon-and-oxygen-containing layer is exposed to an ammonia or amine group-containing precursor distributed across a process volume.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: August 17, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Martin Jay Seamons, Byung Kook Ahn, Jingmei Liang
  • Publication number: 20210143058
    Abstract: Exemplary methods of forming a semiconductor structure may include forming a first silicon oxide layer overlying a semiconductor substrate. The methods may include forming a first silicon layer overlying the first silicon oxide layer. The methods may include forming a silicon nitride layer overlying the first silicon layer. The methods may include forming a second silicon layer overlying the silicon nitride layer. The methods may include forming a second silicon oxide layer overlying the second silicon layer. The methods may include removing the silicon nitride layer. The methods may include removing the first silicon layer and the second silicon layer. The methods may include forming a metal layer between and contacting each of the first silicon oxide layer and the second silicon oxide layer.
    Type: Application
    Filed: November 4, 2020
    Publication date: May 13, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Praket Prakash Jha, Shuchi Sunil Ojha, Jingmei Liang, Abhijit Basu Mallik, Shankar Venkataraman