Patents by Inventor Jingnan LUO
Jingnan LUO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240315957Abstract: The present technology relates to depots for the treatment of postoperative pain via sustained, controlled release of a therapeutic agent. In some embodiments, the depot may comprise a therapeutic region comprising an analgesic, and a control region comprising a bioresorbable polymer and a releasing agent mixed with the polymer. The releasing agent may be configured to dissolve when the depot is placed in vivo to form diffusion openings in the control region. The depot may be configured to be implanted at a treatment site in vivo and, while implanted, release the therapeutic agent at the treatment site for no less than 3 days.Type: ApplicationFiled: March 28, 2024Publication date: September 26, 2024Inventors: Karun D. Naga, Hanson S. Gifford, III, Stephen W. Boyd, Patrick H. Ruane, Jackie Joe Hancock, Michael Feldstein, Koon Kiat Teu, Honglei Wang, Jingnan Luo, Daniel Boon Lim Seet
-
Publication number: 20240226394Abstract: There is provided a controlled-release antibiotic socket for securely holding an implantable medical device that is made from: at least one film having at least one polymer layer, where the at least one film is formed into the socket; at least one antibiotic agent; and at least one opening in the socket, where the at least one polymer layer comprises a biodegradable elastomeric polymeric material; and the at least one antibiotic agent is dispersed within at least one of the at least one polymer layers and/or, when the film comprises at least two polymer layers, the at least one antibiotic agent is disposed as a separate layer between two polymer layers. Also disclosed is the film used to make the socket and uses of both the socket and film.Type: ApplicationFiled: March 19, 2024Publication date: July 11, 2024Inventors: Honglei Wang, Jingnan Luo
-
Publication number: 20240189433Abstract: The present invention relates to polymer comprising a polysaccharide crosslinked with a spacer crosslinker, wherein the spacer crosslinker comprises a first optionally substituted aliphatic moiety terminated at each end with a second moiety comprising at least two carboxylic acid groups. The present invention also relates to a hydrogel, a method of forming the polymer or hydrogel, a composition and capsule comprising the polymer or hydrogel and a method treating obesity, pre-diabetes, diabetes, non-alcoholic fatty liver disease or chronic idiopathic constipation, or of reducing caloric intake or improving glycemic control using the polymer or hydrogel and a method of weight-loss or improving the body appearance in a healthy subject.Type: ApplicationFiled: March 23, 2022Publication date: June 13, 2024Applicant: JUNION LABS PTE. LTD.Inventors: Jingnan LUO, Hongqian BAO, Bo Huai Moses LEE
-
Patent number: 11969500Abstract: The present technology relates to depots for the treatment of postoperative pain via sustained, controlled release of a therapeutic agent. In some embodiments, the depot may comprise a therapeutic region comprising an analgesic, and a control region comprising a bioresorbable polymer and a releasing agent mixed with the polymer. The releasing agent may be configured to dissolve when the depot is placed in vivo to form diffusion openings in the control region. The depot may be configured to be implanted at a treatment site in vivo and, while implanted, release the therapeutic agent at the treatment site for no less than 3 days.Type: GrantFiled: November 10, 2021Date of Patent: April 30, 2024Assignee: Foundry Therapeutics, Inc.Inventors: Karun D. Naga, Hanson S. Gifford, III, Stephen W. Boyd, Patrick H. Ruane, Jackie Joe Hancock, Michael Feldstein, Koon Kiat Teu, Honglei Wang, Jingnan Luo, Daniel Boon Lim Seet
-
Patent number: 11964076Abstract: There is provided a controlled-release antibiotic socket for securely holding an implantable medical device that is made from: at least one film having at least one polymer layer, where the at least one film is formed into the socket; at least one antibiotic agent; and at least one opening in the socket, where the at least one polymer layer comprises a biodegradable elastomeric polymeric material; and the at least one antibiotic agent is dispersed within at least one of the at least one polymer layers and/or, when the film comprises at least two polymer layers, the at least one antibiotic agent is disposed as a separate layer between two polymer layers. Also disclosed is the film used to make the socket and uses of both the socket and film.Type: GrantFiled: July 15, 2021Date of Patent: April 23, 2024Assignee: Foundry Therapeutics, Inc.Inventors: Honglei Wang, Jingnan Luo
-
Publication number: 20230381469Abstract: Provided are drug infusion catheters comprising an axially extending elongate member, an inflatable balloon, two or more cannula each housing an extendable needle. The drug infusion catheters are useful in the delivery of drugs to tissue surrounding a lumen or vessel within a body.Type: ApplicationFiled: November 16, 2021Publication date: November 30, 2023Inventors: Jingnan Luo, Bo Huai Moses Lee
-
Publication number: 20230057153Abstract: Disclosed herein is a drug-coated medical device in the form of a balloon having an inner surface and an outer hydrophobic surface, an adhesion balance layer directly on the outer hydrophobic surface of the balloon, comprising a hydrophilic polymer and/or a hydrophilic compound where the hydrophilic compound has a molecular weight of less than 1,000 Daltons, and a therapeutic layer directly on the adhesion balance layer comprising a therapeutic agent and a pharmaceutically acceptable carrier, wherein the therapeutic agent is a hydrophobic therapeutic agent with one or more hydrogen-bonding groups and is provided as discrete drug particles in the therapeutic layer, the drug particles have at least one dimension that is less than 25 µm and are uniformly distributed on the surface of the balloon, and the pharmaceutically acceptable carrier is hydrophilic and has a molecular weight of less than 1,000 Daltons. A process to make the drug-coated medical device and uses thereof are also disclosed.Type: ApplicationFiled: June 24, 2022Publication date: February 23, 2023Inventors: Jingnan LUO, Qian Yi Michele LEE, Honglei WANG
-
Publication number: 20220117885Abstract: The present technology relates to depots for the treatment of postoperative pain via sustained, controlled release of a therapeutic agent. In some embodiments, the depot may comprise a therapeutic region comprising an analgesic, and a control region comprising a bioresorbable polymer and a releasing agent mixed with the polymer. The releasing agent may be configured to dissolve when the depot is placed in vivo to form diffusion openings in the control region. The depot may be configured to be implanted at a treatment site in vivo and, while implanted, release the therapeutic agent at the treatment site for no less than 3 days.Type: ApplicationFiled: November 10, 2021Publication date: April 21, 2022Inventors: Karun D. Naga, Hanson S. Gifford, III, Stephen W. Boyd, Patrick H. Ruane, Jackie Joe Hancock, Michael Feldstein, Koon Kiat Teu, Honglei Wang, Jingnan Luo, Daniel Boon Lim Seet
-
Publication number: 20220072207Abstract: There is provided a controlled-release antibiotic socket for securely holding an implantable medical device that is made from: at least one film having at least one polymer layer, where the at least one film is formed into the socket; at least one antibiotic agent; and at least one opening in the socket, where the at least one polymer layer comprises a biodegradable elastomeric polymeric material; and the at least one antibiotic agent is dispersed within at least one of the at least one polymer layers and/or, when the film comprises at least two polymer layers, the at least one antibiotic agent is disposed as a separate layer between two polymer layers. Also disclosed is the film used to make the socket and uses of both the socket and film.Type: ApplicationFiled: July 15, 2021Publication date: March 10, 2022Inventors: Honglei Wang, Jingnan Luo
-
Patent number: 11224570Abstract: The present technology relates to depots for the treatment of postoperative pain via sustained, controlled release of a therapeutic agent. In some embodiments, the depot may comprise a therapeutic region comprising an analgesic, and a control region comprising a bioresorbable polymer and a releasing agent mixed with the polymer. The releasing agent may be configured to dissolve when the depot is placed in vivo to form diffusion openings in the control region. The depot may be configured to be implanted at a treatment site in vivo and, while implanted, release the therapeutic agent at the treatment site for no less than 3 days.Type: GrantFiled: February 15, 2021Date of Patent: January 18, 2022Assignee: Foundry Therapeutics, Inc.Inventors: Karun D. Naga, Hanson S. Gifford, III, Stephen W. Boyd, Patrick H. Ruane, Jackie Joe Hancock, Michael Feldstein, Koon Kiat Teu, Honglei Wang, Jingnan Luo, Daniel Boon Lim Seet
-
Patent number: 11202754Abstract: The present technology relates to depots for the treatment of postoperative pain via sustained, controlled release of a therapeutic agent. In some embodiments, the depot may comprise a therapeutic region comprising an analgesic, and a control region comprising a bioresorbable polymer and a releasing agent mixed with the polymer. The releasing agent may be configured to dissolve when the depot is placed in vivo to form diffusion openings in the control region. The depot may be configured to be implanted at a treatment site in vivo and, while implanted, release the therapeutic agent at the treatment site for no less than 3 days.Type: GrantFiled: April 3, 2020Date of Patent: December 21, 2021Assignee: Foundry Therapeutics, Inc.Inventors: Karun D. Naga, Hanson S. Gifford, III, Stephen W. Boyd, Patrick H. Ruane, Jackie Joe Hancock, Michael Feldstein, Koon Kiat Teu, Honglei Wang, Jingnan Luo, Daniel Boon Lim Seet
-
Publication number: 20210361827Abstract: Disclosed herein are elastic, bioresorbable encasements for medical implants, methods for making the same and uses thereof.Type: ApplicationFiled: December 9, 2020Publication date: November 25, 2021Inventors: Koon Kiat Teu, Jingnan Luo, Honglei Wang
-
Publication number: 20210186868Abstract: The present technology relates to depots for the treatment of postoperative pain via sustained, controlled release of a therapeutic agent. In some embodiments, the depot may comprise a therapeutic region comprising an analgesic, and a control region comprising a bioresorbable polymer and a releasing agent mixed with the polymer. The releasing agent may be configured to dissolve when the depot is placed in vivo to form diffusion openings in the control region. The depot may be configured to be implanted at a treatment site in vivo and, while implanted, release the therapeutic agent at the treatment site for no less than 3 days.Type: ApplicationFiled: February 15, 2021Publication date: June 24, 2021Inventors: Karun D. Naga, Hanson S. Gifford, III, Stephen W. Boyd, Patrick H. Ruane, Jackie Joe Hancock, Michael Feldstein, Koon Kiat Teu, Honglei Wang, Jingnan Luo, Daniel Boon Lim Seet
-
Publication number: 20210069101Abstract: The present technology relates to depot assemblies for the controlled, sustained release of a therapeutic agent. The assembly can include a depot having a therapeutic region comprising a therapeutic agent, and a control region comprising a bioresorbable polymer and a releasing agent mixed with the polymer. The releasing agent may be configured to dissolve when the depot is placed in vivo to form diffusion openings in the control region. The depot may be configured to be implanted at a treatment site in vivo and, while implanted, release the therapeutic agent at the treatment site for no less than 3 days.Type: ApplicationFiled: April 11, 2019Publication date: March 11, 2021Inventors: Karun D. Naga, Hanson S. Gifford, III, Stephen W. Boyd, Patrick H. Ruane, Jackie Joe Hancock, Michael Feldstein, Koon Kiat Teu, Honglei Wang, Jingnan Luo, Daniel Boon Lim Seet, Wei Li Lee, Nassireddin Mokarram-Dorri
-
Publication number: 20200368398Abstract: The devices, systems, and methods disclosed herein may be directed to a delivery system including a therapeutic member configured for endoluminal placement via the delivery system into the esophagus of the patient, wherein the therapeutic member comprises a treatment portion comprising a film for controlled release of a chemotherapeutic agent. The film may comprise a control region, a therapeutic region, and a substantially impermeable base region. The film is configured to release the chemotherapeutic agent in a direction away from the substantially impermeable base region. The delivery system is configured to enable a treatment provider to position the treatment portion of the therapeutic member proximate to a treatment site associated with the esophagus of the patient, and the therapeutic member is configured to administer a therapeutically effective dose to the treatment site for a sustained period following endoluminal placement of the therapeutic member.Type: ApplicationFiled: January 8, 2019Publication date: November 26, 2020Inventors: Karun D. Naga, Stephen W. Boyd, Hanson S. Gifford, III, Mark Deem, John Morriss, Martin Mayse, Honglei Wang, Jingnan Luo, Daniel Boon Lim Seet, Koon Kiat Teu, Wei Li Lee
-
Publication number: 20200246255Abstract: The present technology relates to depots for the treatment of postoperative pain via sustained, controlled release of a therapeutic agent. In some embodiments, the depot may comprise a therapeutic region comprising an analgesic, and a control region comprising a bioresorbable polymer and a releasing agent mixed with the polymer. The releasing agent may be configured to dissolve when the depot is placed in vivo to form diffusion openings in the control region. The depot may be configured to be implanted at a treatment site in vivo and, while implanted, release the therapeutic agent at the treatment site for no less than 3 days.Type: ApplicationFiled: April 3, 2020Publication date: August 6, 2020Inventors: Karun D. Naga, Stephen W. Boyd, Patrick H. Ruane, Jackie Joe Hancock, Michael Feldstein, Koot Kiat Teu, Honglei Wang, Jingnan Luo, Daniel Boon Lim Seet, Hanson S. Gifford, III
-
Patent number: 10669500Abstract: Described herein are coatings and formulations thereof for coating a substrate for use in producing a lubricious coating on a substrate surface that is to be inserted into the body lumen of a subject. Said coatings all contain an adhesion promoting coating formulation for applying to a substrate material that is formed from a polymeric adhesion promoter, a monomeric or polymeric crosslinking agent and a photoinitiator, where the polymeric adhesion promoter is a block copolymer comprising hydrophobic hydrophilic polymer blocks and/or a hydrophilic polymer comprising hydrophilic functional groups, where from 10% to 100% of the hydrophilic functional groups are capped with a hydrophobic functional group and the formulations thereof further contain a solvent to enable the coating to be applied to a substrate surface.Type: GrantFiled: June 8, 2016Date of Patent: June 2, 2020Assignees: JMEDTECH (XIAMEN) COATING TECHNOLOGY CO. LTD, JMEDTECH COATING TECHNOLOGIES PTE LTDInventors: Jingnan Luo, Honglei Wang
-
Publication number: 20200009293Abstract: Disclosed herein are elastic, bioresorbable encasements for medical implants, methods for making the same and uses thereof.Type: ApplicationFiled: September 27, 2017Publication date: January 9, 2020Inventors: Koon Kiat Teu, Jingnan Luo, Honglei Wang
-
Publication number: 20190351108Abstract: There is provided a controlled-release antibiotic socket for securely holding an implantable medical device that is made from: at least one film having at least one polymer layer, where the at least one film is formed into the socket; at least one antibiotic agent; and at least one opening in the socket, where the at least one polymer layer comprises a biodegradable elastomeric polymeric material; and the at least one antibiotic agent is dispersed within at least one of the at least one polymer layers and/or, when the film comprises at least two polymer layers, the at least one antibiotic agent is disposed as a separate layer between two polymer layers. Also disclosed is the film used to make the socket and uses of both the socket and film.Type: ApplicationFiled: March 27, 2019Publication date: November 21, 2019Inventors: Honglei Wang, Jingnan Luo
-
Publication number: 20180200413Abstract: Disclosed herein is a drug-coated medical device in the form of a balloon having an inner surface and an outer hydrophobic surface, an adhesion balance layer directly on the outer hydrophobic surface of the balloon, comprising a hydrophilic polymer and/or a hydrophilic compound where the hydrophilic compound has a molecular weight of less than 1,000 Daltons, and a therapeutic layer directly on the adhesion balance layer comprising a therapeutic agent and a pharmaceutically acceptable carrier, wherein the therapeutic agent is a hydrophobic therapeutic agent with one or more hydrogen-bonding groups and is provided as discrete drug particles in the therapeutic layer, the drug particles have at least one dimension that is less than 25 ??? and are uniformly distributed on the surface of the balloon, and the pharmaceutically acceptable carrier is hydrophilic and has a molecular weight of less than 1,000 Daltons. A process to make the drug-coated medical device and uses thereof are also disclosed.Type: ApplicationFiled: July 8, 2016Publication date: July 19, 2018Inventors: Jingnan LUO, Qian Yi Michele LEE, Honglei WANG