Patents by Inventor Jingxun Wei

Jingxun Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951560
    Abstract: The present disclosure provides a wire and arc additive manufacturing (WAAM) method for a titanium alloy. The method includes the following steps: step 1: performing a WAAM process assisted by cooling and rolling; step 2: milling side and top surfaces of an additive part; step 3: performing, by friction stir processing (FSP) equipment, an FSP process on the additive part, and applying cooling and rolling to a side wall of the additive part through a cooling and rolling device during the FSP process; step 4: finish-milling the top surface of the additive part for a WAAM process in the next step; and step 5: repeating the above steps cyclically until final forming of the part is finished. This WAAM method completely breaks dendritic structures and refines grains in the WAAM process of the titanium alloy, thereby effectively repairing defects such as pores and cracks.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: April 9, 2024
    Assignee: NORTHEASTERN UNIVERSITY
    Inventors: Changshu He, Jingxun Wei, Ying Li, Zhiqiang Zhang, Ni Tian, Gaowu Qin
  • Patent number: 11945042
    Abstract: The present disclosure provides a wire and arc additive manufacturing (WAAM) method for a magnesium alloy. The method includes the following steps: step 1: performing a WAAM process assisted by cooling and rolling; step 2: milling side and top surfaces of an additive part; step 3: performing, by friction stir processing (FSP) equipment, an FSP process on the additive part, and applying cooling and rolling to a side wall of the additive part through a cooling and rolling device during the FSP process; step 4: finish-milling the top surface of the additive part for a WAAM process in the next step; and step 5: repeating the above steps cyclically until final forming of the part is finished. The present disclosure completely breaks dendritic structures and refines grains in the WAAM process of the magnesium alloy, thereby effectively repairing defects such as pores and cracks.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: April 2, 2024
    Assignee: NORTHEASTERN UNIVERSITY
    Inventors: Changshu He, Jingxun Wei, Ying Li, Zhiqiang Zhang, Ni Tian, Gaowu Qin
  • Publication number: 20210402506
    Abstract: The present disclosure provides a wire and arc additive manufacturing (WAAM) method for a magnesium alloy. The method includes the following steps: step 1: performing a WAAM process assisted by cooling and rolling; step 2: milling side and top surfaces of an additive part; step 3: performing, by friction stir processing (FSP) equipment, an FSP process on the additive part, and applying cooling and rolling to a side wall of the additive part through a cooling and rolling device during the FSP process; step 4: finish-milling the top surface of the additive part for a WAAM process in the next step; and step 5: repeating the above steps cyclically until final forming of the part is finished. The present disclosure completely breaks dendritic structures and refines grains in the WAAM process of the magnesium alloy, thereby effectively repairing defects such as pores and cracks.
    Type: Application
    Filed: January 17, 2020
    Publication date: December 30, 2021
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Changshu He, Jingxun Wei, Ying Li, Zhiqiang Zhang, Ni Tian, Gaowu Qin
  • Publication number: 20210402507
    Abstract: The present disclosure provides a wire and arc additive manufacturing (WAAM) method for a titanium alloy. The method includes the following steps: step 1: performing a WAAM process assisted by cooling and rolling; step 2: milling side and top surfaces of an additive part; step 3: performing, by friction stir processing (FSP) equipment, an FSP process on the additive part, and applying cooling and rolling to a side wall of the additive part through a cooling and rolling device during the FSP process; step 4: finish-milling the top surface of the additive part for a WAAM process in the next step; and step 5: repeating the above steps cyclically until final forming of the part is finished. This WAAM method completely breaks dendritic structures and refines grains in the WAAM process of the titanium alloy, thereby effectively repairing defects such as pores and cracks.
    Type: Application
    Filed: January 17, 2020
    Publication date: December 30, 2021
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Changshu HE, Jingxun WEI, Ying LI, Zhiqiang ZHANG, Ni TIAN, Gaowu QIN