Patents by Inventor Jinn P. Chu

Jinn P. Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210404054
    Abstract: A highly-ordered nano-structure array, formed on a substrate, mainly comprises a plurality of highly-ordered nano-structure units. Each of the highly-ordered nano-structure units forms a receiving compartment. One end of the receiving compartment opposite to the substrate has an opening. Each of the highly-ordered nano-structure units comprises at least one thin film layer. A periphery and a bottom of the receiving compartment are defined by an inner surface of a surrounding portion of the at least one thin film layer and a top surface of a bottom portion of the at least one thin film layer, respectively. The at least one thin film layer is made of at least one material selected from the group consisting of: metal, alloy, oxide, nitride, and sulfide.
    Type: Application
    Filed: July 28, 2020
    Publication date: December 30, 2021
    Inventors: Jinn P. CHU, Kuan Wei TSENG
  • Patent number: 11115767
    Abstract: A diaphragm structure is used for an audio signal output device. The diaphragm structure includes a film substrate, a polymer fiber structure and a thin film metallic glass. The film substrate includes a first surface and a second surface opposite to the first surface. The polymer fiber structure is combined with the first surface of the film substrate. The thin film metallic glass is formed on at least a part of the second surface of the film substrate.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: September 7, 2021
    Assignee: National Taiwan University of Science and Technology
    Inventors: Jinn P. Chu, Chia-Chi Yu, Bo-Zhang Lai, Chun-Tao Chen
  • Publication number: 20200368856
    Abstract: A diamond blade includes a base and a thin film metallic glass. The base includes a plurality of diamond particles, and the plurality of diamond particles protrude from a surface of the base. The thin film metallic glass is formed on the surface of the base, and the plurality of diamond particles are exposed on the thin film metallic glass.
    Type: Application
    Filed: December 18, 2019
    Publication date: November 26, 2020
    Applicant: National Taiwan University of Science and Technology
    Inventors: Jinn P. Chu, Bo-Zhang Lai
  • Patent number: 10668189
    Abstract: Disclosed is a medical needle used for performing a piercing or insertion operation on an object repetitively, the medical needle comprising a needle body and a metallic glass material layer formed on a surface of the needle body, the metallic glass material layer comprising an alloy consisting of aluminum, zirconium, copper and tantalum. With the presence of the metallic glass material layer covering the needle body, the medical needle may maintain its sharpness after having performed multiple piercing or insertion operations to enhance durability, minimize the increase of maximum piercing or insertion force resulted from piercing or insertion operations, and decrease injury to the object caused by piercing or insertion operations.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: June 2, 2020
    Assignee: National Taiwan University of Science and Technology
    Inventors: Jinn P. Chu, Guei-Huang Jiang, Shih-Hsin Chang, Ming-Jen Chen
  • Publication number: 20200086280
    Abstract: A filter element includes a porous membrane and a metallic glass material. The porous membrane is made of a polymer material. The metallic glass material is formed on two opposite surfaces of the porous membrane. The metallic glass material is coated on a plurality of fibrous structures of the porous membrane to improve the strength and the characteristics of the porous membrane.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 19, 2020
    Inventors: Jinn P. CHU, Kassa Shewaye Temesgen, Chien-Chieh HU, Juin-Yih LAI, Chien-Kuang CHEN
  • Publication number: 20200068328
    Abstract: A diaphragm structure is used for an audio signal output device. The diaphragm structure includes a film substrate, a polymer fiber structure and a thin film metallic glass. The film substrate includes a first surface and a second surface opposite to the first surface. The polymer fiber structure is combined with the first surface of the film substrate. The thin film metallic glass is formed on at least a part of the second surface of the film substrate.
    Type: Application
    Filed: November 9, 2018
    Publication date: February 27, 2020
    Inventors: Jinn P. CHU, Chia-Chi YU, Bo-Zhang LAI, Chun-Tao CHEN
  • Patent number: 10526512
    Abstract: An adhesion element with variable surface adhesive force comprises a substrate, a heating layer, a buffer layer and a nanostructure array. The heating layer is formed on one side of the substrate, wherein a temperature of the heating layer is changeable by a power supply. The buffer layer is formed on the heating layer. The nanostructure array is formed on the buffer layer, and the nanostructure array is made of a metallic glass material and comprises a plurality of nanostructures which are spaced apart from one another and together form an ordered array. The plurality of gas chambers are formed by the nanostructure array.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: January 7, 2020
    Assignee: NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Jinn P. Chu, Chien-Kuang Chen
  • Publication number: 20200003717
    Abstract: A gas sensor includes a substrate, a thin film metallic glass, an ultrananocrystalline diamond layer and a sensor structure. The thin film metallic glass is formed on the substrate. The ultrananocrystalline diamond layer partially covers the thin film metallic glass. The sensor structure includes a seed layer formed on the ultrananocrystalline diamond layer and a plurality of nanostructures formed on the seed layer.
    Type: Application
    Filed: March 14, 2019
    Publication date: January 2, 2020
    Inventors: Jinn P. CHU, Bohr-Ran HUANG, Markos Mehretie YENESEW
  • Publication number: 20190367781
    Abstract: An adhesion element with variable surface adhesive force comprises a substrate, a heating layer, a buffer layer and a nanostructure array. The heating layer is formed on one side of the substrate, wherein a temperature of the heating layer is changeable by a power supply. The buffer layer is formed on the heating layer. The nanostructure array is formed on the buffer layer, and the nanostructure array is made of a metallic glass material and comprises a plurality of nanostructures which are spaced apart from one another and together form an ordered array. The plurality of gas chambers are formed by the nanostructure array.
    Type: Application
    Filed: October 3, 2018
    Publication date: December 5, 2019
    Inventors: Jinn P. CHU, Chien-Kuang CHEN
  • Publication number: 20190323970
    Abstract: A method of manufacturing a sensor comprises: providing a substrate; forming a photoresist layer on the substrate, wherein the photoresist layer comprises a hole array which comprises a plurality of holes which pass through from one side of the photoresist layer to the substrate; sputtering a metallic glass material on the photoresist layer to deposit the metallic glass material on a hole wall of each hole and a part of the substrate defined by the hole wall; removing the photoresist layer and forming a nanotube array structure of the metallic glass material, wherein the nanotube array structure comprises a plurality of nanotubes, and each nanotube has an open end opposite to the substrate; performing a surface treatment on the nanotube array structure to form a plurality of functional groups in each nanotube; and anchoring a plurality of aptamers in each nanotube by activating the plurality of functional groups.
    Type: Application
    Filed: September 25, 2018
    Publication date: October 24, 2019
    Inventors: Jinn P. CHU, Chien-Kuang CHEN
  • Patent number: 10145004
    Abstract: A Zr-based or Zr—Cu based metallic glass thin film (MGTF) coated on aluminum alloy substrate and a method of fabricating the metallic glass and MGTF coated on aluminum alloy substrate are disclosed. The Zr-based metallic glass thin film-coated aluminum alloy substrate of the present invention comprises: an aluminum alloy substrate; and a Zr-based metallic glass thin film located on the substrate, in which the Zr-based metallic glass is represented by the formula of (ZraCubNicAld)100-xSix, wherein 45=<a=<75, 25=<b=<35, 5=<c=<15, 5=<d=<15, 0.1=<x=<10. The Zr—Cu-based metallic glass thin film coated substrate of the present invention comprises: an aluminum alloy substrate; a Zr—Cu-based metallic glass thin film located on the aluminum alloy substrate, in which the Zr—Cu-based metallic glass is represented by the following formula of (ZreCufAlgAgh)100-ySiy, wherein 35=<e=<55, 35=<f=<55, 5=<g=<15, 5=<h=<15, 0.1=<y=<10.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: December 4, 2018
    Assignee: NATIONAL CENTRAL UNIVERSITY
    Inventors: Jason Shiang Ching Jang, Pei Hua Tsai, Jia Bin Li, Yi Zong Zhang, Chih Chiang Fu, Jinn P. Chu
  • Publication number: 20180280585
    Abstract: Disclosed is a medical needle used for performing a piercing or insertion operation on an object repetitively, the medical needle comprising a needle body and a metallic glass material layer formed on a surface of the needle body, the metallic glass material layer comprising an alloy consisting of aluminum, zirconium, copper and tantalum. With the presence of the metallic glass material layer covering the needle body, the medical needle may maintain its sharpness after having performed multiple piercing or insertion operations to enhance durability, minimize the increase of maximum piercing or insertion force resulted from piercing or insertion operations, and decrease injury to the object caused by piercing or insertion operations.
    Type: Application
    Filed: January 18, 2018
    Publication date: October 4, 2018
    Inventors: Jinn P. CHU, Guei-Huang JIANG, Shih-Hsin CHANG, Ming-Jen CHEN
  • Publication number: 20160230264
    Abstract: A Zr-based or Zr—Cu based metallic glass thin film (MGTF) coated on aluminum alloy substrate and a method of fabricating the metallic glass and MGTF coated on aluminum alloy substrate are disclosed. The Zr-based metallic glass thin film-coated aluminum alloy substrate of the present invention comprises: an aluminum alloy substrate; and a Zr-based metallic glass thin film located on the substrate, in which the Zr-based metallic glass is represented by the formula of (ZraCubNicAld)100-xSix, wherein 45=<a=<75, 25=<b=<35, 5=<c=<15, 5=<d=<15, 0.1=<x=<10. The Zr—Cu-based metallic glass thin film coated substrate of the present invention comprises: an aluminum alloy substrate; a Zr—Cu-based metallic glass thin film located on the aluminum alloy substrate, in which the Zr—Cu-based metallic glass is represented by the following formula of (ZreCufAlgAgh)100-ySiy, wherein 35=<e=<55, 35=<f=<55, 5=<g=<15, 5=<h=<15, 0.1=<y=<10.
    Type: Application
    Filed: April 18, 2016
    Publication date: August 11, 2016
    Inventors: Jason Shiang Ching JANG, Pei Hua TSAI, Jia Bin LI, Yi Zong ZHANG, Chih Chiang FU, Jinn P. CHU
  • Patent number: 9339990
    Abstract: A Zr-based or Zr—Cu based metallic glass thin film (MGTF) coated on aluminum alloy substrate and a method of fabricating the metallic glass and MGTF coated on aluminum alloy substrate are disclosed. The Zr-based metallic glass thin film-coated aluminum alloy substrate of the present invention comprises: an aluminum alloy substrate; and a Zr-based metallic glass thin film located on the substrate, in which the Zr-based metallic glass is represented by the formula of (ZraCubNicAld)100-xSix, wherein 45=<a=<75, 25=<b=<35, 5=<c=<15, 5=<d=<15, 0.1=<x=<10. The Zr—Cu-based metallic glass thin film coated substrate of the present invention comprises: an aluminum alloy substrate; a Zr—Cu-based metallic glass thin film located on the aluminum alloy substrate, in which the Zr—Cu-based metallic glass is represented by the formula of (ZreCufAlgAgh)100-ySiy, wherein 35=<e=<55, 35=<f=<55, 5=<g=<15, 5=<h=<15, 0.1=<y=<10.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: May 17, 2016
    Assignee: NATIONAL CENTRAL UNIVERSITY
    Inventors: Jason Shiang Ching Jang, Pei Hua Tsai, Jia Bin Li, Yi Zong Zhang, Chih Chiang Fu, Jinn. P Chu
  • Patent number: 9334560
    Abstract: A cutting tool having a metallic glass thin film (MGTF) coated thereon, a metallic glass cutting tool, and methods of fabricating the same are disclosed. The cutting tool having metallic glass thin film coated thereon comprises: a cutting element having a sharpened portion, and the cutting element is made of metal; and a metallic glass thin film coated on the cutting element, and the metallic glass is represented by the following formula 1 or formula 2, (ZraCubNicAld)100-xSix,??[formula 1] wherein 45=<a=<75, 25=<b=<35, 5=<c=<15, 5=<d=<15, 0.1=<x=<10, (ZreCufAggAlh)100-ySiy,??[formula 2] 35=<e=<55, 35=<f=<55, 5=<g=<15, 5=<h=<15, 0.1=<y=<10. The metallic glass cutting tool of the present invention comprises: a cutting element having a sharpened portion, and the cutting element is made of a metallic glass represented by the above formula 1 or formula 2.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: May 10, 2016
    Assignee: National Central University
    Inventors: Jason Shiang Ching Jang, Pei Hua Tsai, Jia Bin Li, Yu Ze Lin, Chih Chiang Fu, Jinn P. Chu
  • Publication number: 20140353139
    Abstract: A cutting tool having a metallic glass thin film (MGTF) coated thereon, a metallic glass cutting tool, and methods of fabricating the same are disclosed. The cutting tool having metallic glass thin film coated thereon comprises: a cutting element having a sharpened portion, and the cutting element is made of metal; and a metallic glass thin film coated on the cutting element, and the metallic glass is represented by the following formula 1 or formula 2, (ZraCubNicAld)100-xSix,??[formula 1] wherein 45=<a=<75, 25=<b=<35, 5=<c=<15, 5=<d=<15, 0.1=<x=<10, (ZreCufAggAlh)100-ySiy,??[formula 2] 35=<e=<55, 35=<f=<55, 5=<g=<15, 5=<h=<15, 0.1=<y=<10. The metallic glass cutting tool of the present invention comprises: a cutting element having a sharpened portion, and the cutting element is made of a metallic glass represented by the above formula 1 or formula 2.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventors: Jason Shiang Ching JANG, Pei Hua TSAI, Jia Bin LI, Yu Ze LIN, Chih Chiang FU, Jinn P. CHU
  • Publication number: 20130244054
    Abstract: The invention provides a composite material, which includes a titanium alloy substrate and a metallic glass layer. The metallic glass layer is disposed on the titanium alloy substrate. The thickness of the metallic glass layer is 50 nm-200 nm, in which in comparison with the titanium alloy substrate, the fatigue life of the composite material of the invention is increased by 5-17 times.
    Type: Application
    Filed: July 10, 2012
    Publication date: September 19, 2013
    Applicant: National Taiwan University of Science and Technology
    Inventors: Jinn P. Chu, Cheng-Min Lee, Shian-Ching Jang
  • Publication number: 20130108888
    Abstract: A cutting tool having a metallic glass thin film (MGTF) coated thereon, a metallic glass cutting tool, and methods of fabricating the same are disclosed. The cutting tool having metallic glass thin film coated thereon comprises: a cutting element having a sharpened portion, and the cutting element is made of metal; and a metallic glass thin film coated on the cutting element, and the metallic glass is represented by the following formula 1 or formula 2, (ZraCubNicAld)100-xSix,??[formula 1] wherein 45=<a=<75, 25=<b=<35, 5=<c=<15, 5=<d=<15, 0.1=<x=<10, (ZreCufAggAlh)100-ySiy,??[formula 2] 35=<e=<55, 35=<f=<55, 5=<g=<15, 5=<h=<15, 0.1=<y=<10. The metallic glass cutting tool of the present invention comprises: a cutting element having a sharpened portion, and the cutting element is made of a metallic glass represented by the above formula 1 or formula 2.
    Type: Application
    Filed: September 6, 2012
    Publication date: May 2, 2013
    Inventors: Jason Shiang Ching JANG, Pei Hua TSAI, Jia Bin LI, Yu Ze Lin, Chih Chiang FU, Jinn P. CHU
  • Publication number: 20120177945
    Abstract: The present invention relates to a whisker-free coating structure and a method for fabricating the same. The whisker-free coating structure comprises a substrate, a tungsten doped copper layer and a lead-free tin layer, wherein the tungsten doped copper layer and the lead-free tin layer are formed on the substrate in turns; So that, the whisker growth in the lead-free tin layers can be effectively suppressed by this whisker-free coating structure.
    Type: Application
    Filed: March 9, 2012
    Publication date: July 12, 2012
    Applicant: National Taiwan University of Science and Technology
    Inventors: Yee-Wen Yen, Jinn P. Chu, Chon-Hsin Lin, Chun-Lei Hsu, Chao-Kang Li
  • Publication number: 20110164345
    Abstract: The present invention provides a metal-insulator-metal capacitor, which includes: a substrate, a copper-based bottom electrode overlying the substrate, wherein the copper based bottom electrode is doped with rhenium nitride or ruthenium nitride, a top electrode overlying the copper based bottom electrode, and a capacitor insulator between and adjoining the copper based bottom electrode and the top electrode.
    Type: Application
    Filed: May 13, 2010
    Publication date: July 7, 2011
    Applicant: NATIONAL TAIWAN UNIVERSITY OF SCIENCE & TECHNOLOGY
    Inventors: Jinn P. Chu, Cheng-Hui Wu, Chon-Hsin Lin