Patents by Inventor Jinsheng Jia

Jinsheng Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240092679
    Abstract: The present invention discloses a fabrication method and use of a ?40 mm large-size and high-contrast fiber optic image inverter, belonging to the field of manufacturing of fiber optic imaging elements. The light-absorbing glass for preparing the ?40 mm large-size and high-contrast fiber optic image inverter consists of the following components in molar percentage: SiO2 60-69.9, Al2O3 1.0-10.0, B2O3 10.1-15.0, Na2O 1.0-8.0, K2O 3.0-10.0, MgO 0.1-1.0, CaO 0.5-5.0, ZnO 0-0.1, TiO2 0-0.1, ZrO2 0.1-1.0, Fe2O3 3.0-6.5, Co2O3 0.1-0.5, V2O5 0.51-1.5 and MoO3 0.1-1.0. The fiber optic image inverter has the advantages of low crosstalk of stray light, high resolution and high contrast.
    Type: Application
    Filed: July 20, 2023
    Publication date: March 21, 2024
    Inventors: Lei Zhang, Jinsheng Jia, Yue Zhao, Yu Shi, Huichao Xu, Haoyang Yu, Jing Zhang, Zhiheng Fan, Xian Zhang, Xiaofeng Tang, Puguang Song, Jiuwang Wang, Yun Wang, Yang Fu, Yajie Du, Yonggang Huang
  • Patent number: 11858846
    Abstract: The present invention discloses a glass with high refractive index for fiber optic imaging elements with medium-expansion and fabrication method therefor, the glass comprising the following components in percentage by weight: SiO2 5-9%, Al2O3 0-1%, B2O3 23-28%, CaO 0-3%, BaO 6-12%, La2O3 30-34%, Nb2O5 4-8%, Ta2O5 0-1%, Y2O3 0-1%, ZnO 4-9%, TiO2 4-8%, ZrO2 4-6%, SnO2 0-1%. The present invention further provides a fabrication method for the glass with a high refractive index, comprising: putting raw materials quartz sand, aluminum hydroxide, boric acid or boric anhydride, calcium carbonate, barium carbonate or barium nitrate, lanthanum oxide, niobium oxide, tantalum oxide, yttrium oxide, zinc oxide, titanium dioxide, zirconium oxide and stannic oxide, etc. into a platinum crucible according to the requirement of dosing, melting at a high temperature, cooling and fining, leaking and casting to form a glass rod, and then annealing, cooling and chilling the molded glass rod.
    Type: Grant
    Filed: January 29, 2022
    Date of Patent: January 2, 2024
    Assignee: China Building Materials Academy
    Inventors: Lei Zhang, Zhenbo Cao, Jinsheng Jia, Yun Wang, Yue Zhao, Xian Zhang, Xiaofeng Tang, Yu Shi, Jing Zhang, Zhiheng Fan, Huichao Xu, Haoyang Yu, Puguang Song, Aixin Wang, Changhua Hong
  • Patent number: 11802071
    Abstract: A fiber optic imaging element includes medium-expansion and a fabrication method including: (1) matching a core glass rod with a cladding glass tube to perform mono fiber drawing; (2) arranging the mono fibers into a mono fiber bundle rod, and then drawing the mono fiber bundle rod into a multi fiber; (3) arranging the multi fiber into a multi fiber bundle rod, and then drawing the multi fiber bundle rod into a multi-multi fiber; (4) cutting the multi-multi fiber, and then arranging the multi-multi fiber into a fiber assembly buddle, then putting the fiber assembly buddle into a mold of heat press fusion process, and performing the heat press fusion process to prepare a block of the fiber optic imaging element with medium-expansion; and (5) edged rounding, cutting and slicing, face grinding and polishing the prepared medium-expansion block into a billet.
    Type: Grant
    Filed: January 29, 2022
    Date of Patent: October 31, 2023
    Assignee: China Building Materials Academy
    Inventors: Lei Zhang, Zhenbo Cao, Jinsheng Jia, Yun Wang, Yue Zhao, Xian Zhang, Xiaofeng Tang, Yu Shi, Jing Zhang, Zhiheng Fan, Huichao Xu, Haoyang Yu, Puguang Song, Aixin Wang, Changhua Hong
  • Publication number: 20230242436
    Abstract: The present invention discloses a glass with high refractive index for fiber optic imaging elements with medium-expansion and fabrication method therefor, the glass comprising the following components in percentage by weight: SiO2 5-9%, Al2O3 0-1%, B2O3 23-28%, CaO 0-3%, BaO 6-12%, La2O3 30-34%, Nb2O5 4-8%, Ta2O5 0-1%, Y2O3 0-1%, ZnO 4-9%, TiO2 4-8%, ZrO2 4-6%, SnO2 0-1%. The present invention further provides a fabrication method for the glass with a high refractive index, comprising: putting raw materials quartz sand, aluminum hydroxide, boric acid or boric anhydride, calcium carbonate, barium carbonate or barium nitrate, lanthanum oxide, niobium oxide, tantalum oxide, yttrium oxide, zinc oxide, titanium dioxide, zirconium oxide and stannic oxide, etc. into a platinum crucible according to the requirement of dosing, melting at a high temperature, cooling and fining, leaking and casting to form a glass rod, and then annealing, cooling and chilling the molded glass rod.
    Type: Application
    Filed: January 29, 2022
    Publication date: August 3, 2023
    Inventors: Lei Zhang, Zhenbo Cao, Jinsheng Jia, Yun Wang, Yue Zhao, Xian Zhang, Xiaofeng Tang, Yu Shi, Jing Zhang, Zhiheng Fan, Huichao Xu, Haoyang Yu, Puguang Song, Aixin Wang, Changhua Hong
  • Publication number: 20230212058
    Abstract: A fiber optic imaging element includes medium-expansion and a fabrication method including: (1) matching a core glass rod with a cladding glass tube to perform mono fiber drawing; (2) arranging the mono fibers into a mono fiber bundle rod, and then drawing the mono fiber bundle rod into a multi fiber; (3) arranging the multi fiber into a multi fiber bundle rod, and then drawing the multi fiber bundle rod into a multi-multi fiber; (4) cutting the multi-multi fiber, and then arranging the multi-multi fiber into a fiber assembly buddle, then putting the fiber assembly buddle into a mold of heat press fusion process, and performing the heat press fusion process to prepare a block of the fiber optic imaging element with medium-expansion; and (5) edged rounding, cutting and slicing,
    Type: Application
    Filed: January 29, 2022
    Publication date: July 6, 2023
    Inventors: Lei Zhang, Zhenbo Cao, Jinsheng Jia, Yun Wang, Yue Zhao, Xian Zhang, Xiaofeng Tang, Yu Shi, Jing Zhang, Zhiheng Fan, Huichao Xu, Haoyang Yu, Puguang Song, Aixin Wang, Changhua Hong
  • Publication number: 20210048294
    Abstract: A dam slope deformation monitoring system and method are provided. The monitoring system monitors an entire dam in a reservoir area by using an unmanned aerial vehicle (UAV) photogrammetry system, and determines an encrypted monitoring area (steep slope) with the relatively large deformation and a relatively large digital elevation difference; determines, in the intensive monitoring area, a first level key monitoring area with the larger deformation by using a ground-based radar interferometry measurement system; determines, in the first level key monitoring area, a second level key monitoring area with the larger deformation by using a ground-based three-dimensional lidar measurement system; determines, in the second level key monitoring area, a key monitoring particle with a high deformation speed by using a global navigation satellite system (GNSS). The core chip stack is used to monitor and warn the collapse process in the area where the key monitoring particles are located.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 18, 2021
    Inventors: Tianjie LEI, Liuqian DING, Changjun LIU, Jinsheng JIA, Cuiying ZHENG, Xiangyu LI, Jiabao WANG, Chun ZHAO
  • Publication number: 20210049515
    Abstract: The present invention provides a prediction method and system of high slope deformation. First, historical deformation data of each period of each part of a high slope is obtained as sample data; the sample data is divided into training samples and test samples; then a parameter group of a Support Vector Machine (SVM) model is optimized by using the training samples and a particle Swarm Optimization (PSO) algorithm to determine an optimal parameter group of the SVM model, to obtain a trained SVM model; whether the trained SVM model satisfies a condition is verified by using the test samples, and when the SVM model does not satisfy the condition, an optimal parameter group of the SVM model is re-determined; and finally the deformation of each area of the high slope is predicted by using the SVM model that satisfies the condition.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 18, 2021
    Inventors: Changjun LIU, Tianjie LEI, Liuqian DING, Xiangyu LI, Jiabao WANG, Jinsheng JIA, Cuiying ZHENG, Chun ZHAO
  • Publication number: 20210048523
    Abstract: The present disclosure provides a method and a system for precise location of a high slope collapse area. Firstly, the slope images in a long time series are obtained, the slope images in the long time series are composed into a two-dimensional slope deformation graph, and an area with the maximum deformation in the two-dimensional slope deformation graph is selected as a deformation area. Then, the deformation area is segmented by straight line, and the deformation region obtained by straight line segmentation is displayed in overlapping way in the slope images of long time series, and the region corresponding to the connecting line with the largest change range is selected as the monitoring line area from the overlapping image.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 18, 2021
    Inventors: Tianjie LEI, Jinsheng JIA, Changjun LIU, Liuqian DING, Xiangyu LI, Cuiying ZHENG, Jiabao WANG
  • Patent number: 10815631
    Abstract: A method for cemented material dam construction based on whole-process quality control includes: determining a water-binder ratio of a sand and gravel material through a simulation test; laying rockfill on the first cemented sand and gravel layer before the final setting time of the first cemented sand and gravel layer; adjusting the maximum particle size of the rockfill and the distance between the particles in the rockfill according to the design requirements; spraying a cement slurry on the rockfill to wrap all the particles in the rockfill and laying a second cemented sand and gravel layer before the initial setting time of the cement slurry; performing rolling compaction on the construction layer until the decline in the thickness of the construction layer and the apparent density of the rolled surface meet the design requirements; and completing the cemented material dam construction.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: October 27, 2020
    Assignee: CHINA INSTITUTE OF WATER RESOURCES AND HYDROPOWER RESEARCH
    Inventors: Jinsheng Jia, Yang Wang, Cuiying Zheng, Shuguang Li, Wanli Shi, Zhongwei Liu, Tianjie Lei, Lianying Ding, Yangfeng Wu