Patents by Inventor Jintao Guo

Jintao Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230136252
    Abstract: The present application provides GPC2-specific antibodies and antigen binding fragments thereof. A chimeric antigen receptor (CAR) that specifically binds glypican-2 (GPC2) comprising a GPC2-specific antibody, a transmembrane domain, and an intracellular signaling domain. T cells comprising the disclosed CAR constructs can be used for cancer immunotherapy.
    Type: Application
    Filed: March 12, 2021
    Publication date: May 4, 2023
    Inventors: Wang Zhang, Jintao Guo, Fengyuan TANG, Shuai Yang, Yuanyuan Peng, An Tang, Xiaojie Tu, Yunlei Liu, Shu Wu
  • Patent number: 11542318
    Abstract: The present disclosure provides use of chemokine receptor CXCR5, wherein CAR-T cells with enhanced chemotaxis are obtained by modifying chimeric antigen receptor T cells (CAR-T cells) utilizing the chemotactic signal between CXCR5 and its ligand CXCL13. The chemokine receptor CXCR5 can guide CAR-T cells to migrate to tumors. It has an excellent ability to enhance the chemotaxis of CAR-T cells, can specifically clear tumor cells, and effectively solve the problem of poor efficacy of the existing CAR-T therapy for solid tumors, thereby exhibiting broad application prospects and great market value.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: January 3, 2023
    Assignee: GUANGZHOU BIO-GENE TECHNOLOGY CO., LTD.
    Inventors: Guangchao Li, Min Luo, Jintao Guo, Wenjun Mo, Wen Ding
  • Publication number: 20220043816
    Abstract: Techniques are disclosed relating to using machine learning techniques to predict storage configurations for historical data. In some embodiments, a computer system stores representations of historical data according to a current set of storage parameters. The representations may include snapshots of historical data in a data repository at different points in time. The computer system may receive queries for historical data specifying points in time from which to retrieve the historical data. In some embodiments, the computer system responds to the queries using the stored representations and determines performance metrics for the responses. In some embodiments, the computer system trains a machine learning model using the performance metrics. Based on output of the trained model, the computer system updates the current set of storage parameters.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 10, 2022
    Inventors: Kai Xie, Lin Song, Kim Dung Bui, Jintao Guo, Chun Kiat Ho, Edwin Boaz Soenaryo
  • Publication number: 20210214418
    Abstract: The present disclosure provides use of chemokine receptor CXCR5, wherein CAR-T cells with enhanced chemotaxis are obtained by modifying chimeric antigen receptor T cells (CAR-T cells) utilizing the chemotactic signal between CXCR5 and its ligand CXCL13. The chemokine receptor CXCR5 can guide CAR-T cells to migrate to tumors. It has an excellent ability to enhance the chemotaxis of CAR-T cells, can specifically clear tumor cells, and effectively solve the problem of poor efficacy of the existing CAR-T therapy for solid tumors, thereby exhibiting broad application prospects and great market value.
    Type: Application
    Filed: December 12, 2019
    Publication date: July 15, 2021
    Inventors: Guangchao LI, Min LUO, Jintao GUO, Wenjun MO, Wen DING
  • Publication number: 20210100668
    Abstract: A thermopuncture stent implantation device has a proximal end and a distal end, the distal end of a front handle is provided with an outer tube, an insulating middle tube is provided in the outer tube, a conductive part is provided in the insulating middle tube, a terminal of the proximal end of the conductive part is connected to an external power source, a boosting tube is provided between the proximal end of the outer tube and the insulating middle tube, the distal end of the boosting tube and the proximal end of the insulating middle tube are connected with each other, the distal end of the conductive part is provided with an insulating part, on which a conductive head connected with the conductive part is distributed; the stent, after being compressed, is located in a space between the distal end of the conductive part and the outer tube.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 8, 2021
    Applicants: MICRO-TECH (NANJING) CO., LTD., SHENGJING HOSPITAL OF CHINA MEDICAL UNIVERSITY
    Inventors: Siyu SUN, Nan GE, Jintao GUO, Jianyu WEI, Zhenghua SHEN, Changqing LI, Derong LENG, Jialing SUN, Chunjun LIU
  • Patent number: 10710886
    Abstract: The invention provides a method for synthesizing a mesoporous zeolite ETS-10 containing a metal without a templating agent. The method according to the invention comprises the steps of: mixing a silicon source with a NaOH solution to obtain a mixed solution so that the content of Na2O in the mixed solution is 10.0% to 20.0% by weight; adding a KOH or KF solution so that the content of K2O is 10.0% to 25.0% by weight and stirring it well; adding a titanium source solution and stirring it well; adding a precursor compound containing metal Ni and/or Co and stirring it well; and subjecting it to a crystallization reaction to obtain the mesoporous zeolite ETS-10. The mesoporous zeolite ETS-10 obtained by the invention has a specific surface area of 320 to 420 m2/g, a mesoporous volume of 0.11 to 0.21 cm3/g, and thus can be used as a catalyst and a support thereof in synthesis industry for macromolecular fine chemicals.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: July 14, 2020
    Assignee: PetroChina Company Limited
    Inventors: Tiegang Xu, Tiandi Tang, Wenqian Fu, Lei Zhang, Runsheng Shen, Guoren Cai, Baoli Ma, Weichi Xu, Guangming Wen, Jinhe Song, Dan Wang, Mingwei Tan, Wencheng Zhang, Jintao Guo, Gang Wang, Quanguo Zhang, Xianjun Wu, Liyan Guo, Lei Fang, Liru Cong, Guojia Zhang, Chunming Dong, Yu Liang
  • Publication number: 20200071174
    Abstract: The invention provides a method for synthesizing a mesoporous zeolite ETS-10 containing a metal without a templating agent. The method according to the invention comprises the steps of: mixing a silicon source with a NaOH solution to obtain a mixed solution so that the content of Na2O in the mixed solution is 10.0% to 20.0% by weight; adding a KOH or KF solution so that the content of K2O is 10.0% to 25.0% by weight and stirring it well; adding a titanium source solution and stirring it well; adding a precursor compound containing metal Ni and/or Co and stirring it well; and subjecting it to a crystallization reaction to obtain the mesoporous zeolite ETS-10. The mesoporous zeolite ETS-10 obtained by the invention has a specific surface area of 320 to 420 m2/g, a mesoporous volume of 0.11 to 0.21 cm3/g, and thus can be used as a catalyst and a support thereof in synthesis industry for macromolecular fine chemicals.
    Type: Application
    Filed: May 13, 2019
    Publication date: March 5, 2020
    Inventors: Tiegang XU, Tiandi Tang, Wenqian Fu, Lei Zhang, Runsheng Shen, Guoren Cai, Baoli Ma, Weichi Xu, Guangming Wen, Jinhe Song, Dan Wang, Mingwei Tan, Wencheng Zhang, Jintao Guo, Gang Wang, Quanguo Zhang, Xianjun Wu, Liyan Guo, Lei Fang, Liru Cong, Guojia Zhang, Chunming Dong, Yu Liang
  • Patent number: 10258965
    Abstract: The present invention relates to a method for preparing a sulfur-resistant catalyst for aromatics saturated hydrogenation, comprising the steps of: preparing noble metal impregnation solutions from a noble metal and deionized water or an acid solution; impregnating a carrier with the impregnation solutions sequentially from high to low concentrations by incipient impregnation; homogenizing, drying, and calcinating to obtain the sulfur-resistant catalyst for aromatics saturated hydrogenation. The catalyst for aromatics saturated hydrogenation prepared by the method according to the present invention is primarily used in processing low-sulfur and high-aromatics light distillate, middle distillate, atmospheric gas oil, and vacuum gas oil.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: April 16, 2019
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Xiaodong Yang, Yanfeng Liu, Sheng Hu, Chunmei Yu, Hongling Chu, Xinmiao Wang, Shanbin Gao, Bin Xie, Famin Sun, Wencheng Zhang, Jintao Guo, Quanguo Zhang, Lili Jiang, Xiaofeng Wang, Yuanyuan Ji, Ran Sun, Yuxiao Feng, Xianjun Wu, Guojia Zhang, Tan Zhao, Wenyong Liu, Rui Li, Ruifeng Li, Cheng Tang
  • Patent number: 10252255
    Abstract: Disclosed are a method for preparing a noble metal hydrogenation catalyst comprising preparing a carrier from a molecular sieve having a 10-member ring structure and/or an amorphous porous material; preparing a noble metal impregnation solution; and preparing noble metal impregnation solutions in a concentration gradient ranging from 0.05 to 5.0 wt % with deionized water, and sequentially impregnating the carrier with the impregnation solutions from low to high concentrations during the carrier impregnation process, or preparing a noble metal impregnation solution at a low concentration ranging from 0.05 to 0.5 wt % and impregnating the carrier by gradually increasing the concentration of the noble metal impregnation solution to 2.0 to 5.0 wt % in the impregnation process, followed by homogenization, drying, and calcination, as well as a noble metal hydrogenation catalyst, use thereof, and a method for preparing lubricant base oil.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: April 9, 2019
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Xiaodong Yang, Chunmei Yu, Yanfeng Liu, Sheng Hu, Zhihua Zhang, Famin Sun, Wencheng Zhang, Jintao Guo, Wenyong Liu, Xinmiao Wang, Shanbin Gao, Bin Xie, Jinxian Jiang, Yuhe Yang, Rui Li, Guojia Zhang, Lili Jiang, Tan Zhao, Dongqing Wang, Jingying Zhao, Quanguo Zhang, Ruifeng Li, Shengbo Sun, Hong Li, Cheng Tang
  • Publication number: 20160167017
    Abstract: The present invention relates to a method for preparing a sulfur-resistant catalyst for aromatics saturated hydrogenation, comprising the steps of: preparing noble metal impregnation solutions from a noble metal and deionized water or an acid solution; impregnating a carrier with the impregnation solutions sequentially from high to low concentrations by incipient impregnation; homogenizing, drying, and calcinating to obtain the sulfur-resistant catalyst for aromatics saturated hydrogenation. The catalyst for aromatics saturated hydrogenation prepared by the method according to the present invention is primarily used in processing low-sulfur and high-aromatics light distillate, middle distillate, atmospheric gas oil, and vacuum gas oil.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 16, 2016
    Inventors: Xiaodong YANG, Yanfeng LIU, Sheng HU, Chunmei YU, Hongling CHU, Xinmiao Wang, Shanbin GAO, Bin XIE, Famin SUN, Wencheng Zhang, Jintao GUO, Quanguo Zhang, Lili JIANG, Xiaofeng Wang, Yuanyuan JI, Ran SUN, Yuxiao FENG, Xianjun WU, Guojia ZHANG, Tan ZHAO, Wenyong LIU, Rui LI, Ruifeng LI, Cheng TANG
  • Publication number: 20160167029
    Abstract: Disclosed are a method for preparing a noble metal hydrogenation catalyst comprising preparing a carrier from a molecular sieve having a 10-member ring structure and/or an amorphous porous material; preparing a noble metal impregnation solution from one or more of compounds of noble metals Pt, Pd, Ru, Rh, Re, and Ir and deionized water or an acid solution; and preparing noble metal impregnation solutions in a concentration gradient ranging from 0.05 to 5.0 wt % with deionized water, and sequentially impregnating the carrier with the impregnation solutions from low to high concentrations during the carrier impregnation process, or preparing a noble metal impregnation solution at a low concentration ranging from 0.05 to 0.5 wt % and impregnating the carrier by gradually increasing the concentration of the noble metal impregnation solution to 2.0 to 5.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 16, 2016
    Inventors: Xiaodong YANG, Chunmei YU, Yanfeng LIU, Sheng HU, Zhihua ZHANG, Famin SUN, Wencheng ZHANG, Jintao GUO, Wenyong LIU, Xinmiao WANG, Shanbin GAO, Bin XIE, Jinxian JIANG, Yuhe YANG, Rui LI, Guojia ZHANG, Lili JIANG, Tan ZHAO, Dongqing WANG, Jingying ZHAO, Quanguo ZHANG, Ruifeng LI, Shengbo SUN, Hong LI, Cheng TANG
  • Patent number: 9265638
    Abstract: The invention discloses a one-piece stent implanter, including a front handle and a rear handle; the front end of the front handle is provided with an outer pipe whose top is flexibly connected with a cautery tip, the outer pipe is internally provided with a middle pipe and a stent; the rear handle includes a stainless steel pipe for supporting and an inner pipe positioned in the stainless steel pipe, the top of the inner pipe is fixedly connected to the cautery tip; one end of the middle pipe is mutually touched and connected with one end of the stent, while the other end of the middle pipe is mutually connected with the stainless steel pipe; one end of the stent is close to the cautery tip, with a certain gap kept; when the front handle is retreated along the stainless steel pipe, the outer pipe simultaneously retreats and separates from the cautery tip, positions of the middle pipe and the rear handle remain unchanged, and the stent is automatically released.
    Type: Grant
    Filed: August 18, 2013
    Date of Patent: February 23, 2016
    Assignees: SHENGJING HOSPITAL OF CHINA MEDICAL UNIVERSITY
    Inventors: Siyu Sun, Xiaodan Chen, Chuanming Li, Nan Ge, Sheng Wamg, Jintao Guo, Derong Leng