Patents by Inventor Jinxian Jiang

Jinxian Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10252255
    Abstract: Disclosed are a method for preparing a noble metal hydrogenation catalyst comprising preparing a carrier from a molecular sieve having a 10-member ring structure and/or an amorphous porous material; preparing a noble metal impregnation solution; and preparing noble metal impregnation solutions in a concentration gradient ranging from 0.05 to 5.0 wt % with deionized water, and sequentially impregnating the carrier with the impregnation solutions from low to high concentrations during the carrier impregnation process, or preparing a noble metal impregnation solution at a low concentration ranging from 0.05 to 0.5 wt % and impregnating the carrier by gradually increasing the concentration of the noble metal impregnation solution to 2.0 to 5.0 wt % in the impregnation process, followed by homogenization, drying, and calcination, as well as a noble metal hydrogenation catalyst, use thereof, and a method for preparing lubricant base oil.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: April 9, 2019
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Xiaodong Yang, Chunmei Yu, Yanfeng Liu, Sheng Hu, Zhihua Zhang, Famin Sun, Wencheng Zhang, Jintao Guo, Wenyong Liu, Xinmiao Wang, Shanbin Gao, Bin Xie, Jinxian Jiang, Yuhe Yang, Rui Li, Guojia Zhang, Lili Jiang, Tan Zhao, Dongqing Wang, Jingying Zhao, Quanguo Zhang, Ruifeng Li, Shengbo Sun, Hong Li, Cheng Tang
  • Publication number: 20160167029
    Abstract: Disclosed are a method for preparing a noble metal hydrogenation catalyst comprising preparing a carrier from a molecular sieve having a 10-member ring structure and/or an amorphous porous material; preparing a noble metal impregnation solution from one or more of compounds of noble metals Pt, Pd, Ru, Rh, Re, and Ir and deionized water or an acid solution; and preparing noble metal impregnation solutions in a concentration gradient ranging from 0.05 to 5.0 wt % with deionized water, and sequentially impregnating the carrier with the impregnation solutions from low to high concentrations during the carrier impregnation process, or preparing a noble metal impregnation solution at a low concentration ranging from 0.05 to 0.5 wt % and impregnating the carrier by gradually increasing the concentration of the noble metal impregnation solution to 2.0 to 5.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 16, 2016
    Inventors: Xiaodong YANG, Chunmei YU, Yanfeng LIU, Sheng HU, Zhihua ZHANG, Famin SUN, Wencheng ZHANG, Jintao GUO, Wenyong LIU, Xinmiao WANG, Shanbin GAO, Bin XIE, Jinxian JIANG, Yuhe YANG, Rui LI, Guojia ZHANG, Lili JIANG, Tan ZHAO, Dongqing WANG, Jingying ZHAO, Quanguo ZHANG, Ruifeng LI, Shengbo SUN, Hong LI, Cheng TANG
  • Publication number: 20140213731
    Abstract: A supercritical carbon dioxide-assisted solid-phase grafting modification method for polypropylene, comprises swelling polypropylene for 0.5 to 10 hours in supercritical carbon dioxide having dissolved vinyl monomer and an initiator, then slowly relieving the pressure; moving the polypropylene that has undergone the swelling process into a reaction kettle, and adding xylene as an interface agent, the mass of xylene being 1% of the polypropylene; increasing the temperature to between 65° C. and 165° C. under normal pressure, and reacting 1 to 10 hours to obtain modified polypropylene; the swelling permeation temperature during the swelling process is from 31° C. to 60° C., the swelling pressure is from 7.5 to 12 MPa; the initiator is an azo compound or a peroxide. In the present method, the grafting rate reaches 5.4%, the thermal property, polarity, and mechanical property all improve substantially, and hydrophilic property is substantially enhanced.
    Type: Application
    Filed: April 13, 2012
    Publication date: July 31, 2014
    Applicant: Petrochina Company Limited
    Inventors: Wenyan Wang, Mingqiang Zhang, Jian Wang, Dengfei Wang, Enguang Zou, Liping Qiu, Qun Dong, Jinxian Jiang, Jianying Ma, Tengjie Ge, Yanjie An, Deying Zhang, Bo Li, Gujyue Guo, Shihua Wang, He Ren, Lirong Jing, Haifeng Guo