Patents by Inventor Jinxiang Dai

Jinxiang Dai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8107223
    Abstract: The disclosure relates to asymmetric supercapacitors containing: a positive electrode comprising a current collector and a first active material selected from a layered double hydroxide of formula [M2+1?xMx3+(OH)2]An?x/n·mH2O where M2+ is at least one divalent metal, M3+ is at least one trivalent metal and A is an anion of charge n?, where x is greater than zero and less than 1, n is 1, 2, 3 or 4 and m is 0 to 10; LiCoO2; LiCoxNiyO2 where x and y are greater than zero and less than 1; LiCoxNiyMn(1?x?y)O2 where x and y are greater than zero and less than 1; CoSx where x is from 1 to 1.5; MoS; Zn; activated carbon and graphite; a negative electrode containing a material selected from a carbonaceous active material, MoO3 and Li1xMoO6?x/2; an aqueous electrolyte solution or a non-aqueous ionic conducting electrolyte solution containing a salt and a salt and a non-aqueous solution; and a separator plate. Alternatively, the electrolyte can be a solid electrolyte.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: January 31, 2012
    Assignee: U.S. Nanocorp, Inc.
    Inventors: Stephen M. Lipka, John R. Miller, Tongsan D. Xiao, Jinxiang Dai
  • Publication number: 20110200864
    Abstract: An electrolyte composition comprises lithium salts. The electrolyte composition is operative at temperatures of about 350 to about 600° C. in a battery. The electrolyte composition displays a specific conductivity of less than 10?7 Siemens per centimeter when the temperature is lower than 100° C. and greater than 10?3 Siemens per centimeter when the temperature is greater than 400° C. The electrolyte composition is devoid of a separator.
    Type: Application
    Filed: February 16, 2011
    Publication date: August 18, 2011
    Applicant: U.S. NANOCORP, INC.
    Inventor: Jinxiang Dai
  • Publication number: 20090290287
    Abstract: The disclosure relates to asymmetric supercapacitors containing: a positive electrode comprising a current collector and a first active material selected from a layered double hydroxide of formula [M2+1?xMx3+(OH)2]An?x/n·mH2O where M2+ is at least one divalent metal, M3+ is at least one trivalent metal and A is an anion of charge n?, where x is greater than zero and less than 1, n is 1, 2, 3 or 4 and m is 0 to 10; LiCoO2; LiCoxNiyO2 where x and y are greater than zero and less than 1; LiCoxNiyMn(1?x?y)O2 where x and y are greater than zero and less than 1; CoSx where x is from 1 to 1.5; MoS; Zn; activated carbon and graphite; a negative electrode containing a material selected from a carbonaceous active material, MoO3 and Li1xMoO6?x/2; an aqueous electrolyte solution or a non-aqueous ionic conducting electrolyte solution containing a salt and a salt and a non-aqueous solution; and a separator plate. Alternatively, the electrolyte can be a solid electrolyte.
    Type: Application
    Filed: July 29, 2009
    Publication date: November 26, 2009
    Applicant: NANOCORP, INC.
    Inventors: Stephen M. Lipka, John R. Miller, Tongsan D. Xiao, Jinxiang Dai
  • Patent number: 7576971
    Abstract: Asymmetric supercapacitors comprise: a positive electrode comprising a current collector and a first active material selected from the group consisting of manganese dioxide, silver oxide, iron sulfide, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron phosphate, and a combination comprising at least one of the foregoing active materials; a negative electrode comprising a carbonaceous active material; an aqueous electrolyte solution selected from the group consisting of aqueous solutions of hydroxides of alkali metals, aqueous solutions of carbonates of alkali metals, aqueous solutions of chlorides of alkali metals, aqueous solutions of sulfates of alkali metals, aqueous solutions of nitrates of alkali metals, and a combination comprising at least one of the foregoing aqueous solutions; and a separator plate. Alternatively, the electrolyte can be a non-aqueous ionic conducting electrolyte or a solid electrolyte.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: August 18, 2009
    Assignee: U.S. Nanocorp, Inc.
    Inventors: Stephen M. Lipka, John R. Miller, Tongsan D. Xiao, Jinxiang Dai
  • Publication number: 20080166493
    Abstract: Anti-fouling coating compositions and methods of making and using those compositions are provided. In an embodiment, a coating composition comprises ceramic nanoparticles, wherein the coating composition is capable of inhibiting contaminants from adhering to a solid surface.
    Type: Application
    Filed: January 9, 2008
    Publication date: July 10, 2008
    Applicant: INFRAMAT CORPORATION
    Inventors: T. Danny Xiao, Xinqing Ma, Kim Arnold Wynns, Meidong Wang, Jinxiang Dai
  • Publication number: 20080158778
    Abstract: Asymmetric supercapacitors comprise: a positive electrode comprising a current collector and a first active material selected from the group consisting of manganese dioxide, silver oxide, iron sulfide, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron phosphate, and a combination comprising at least one of the foregoing active materials; a negative electrode comprising a carbonaceous active material; an aqueous electrolyte solution selected from the group consisting of aqueous solutions of hydroxides of alkali metals, aqueous solutions of carbonates of alkali metals, aqueous solutions of chlorides of alkali metals, aqueous solutions of sulfates of alkali metals, aqueous solutions of nitrates of alkali metals, and a combination comprising at least one of the foregoing aqueous solutions; and a separator plate. Alternatively, the electrolyte can be a non-aqueous ionic conducting electrolyte or a solid electrolyte.
    Type: Application
    Filed: February 27, 2007
    Publication date: July 3, 2008
    Inventors: Stephen M. Lipka, John R. Miller, Tongsan D. Xiao, Jinxiang Dai
  • Publication number: 20070134307
    Abstract: An antimicrobial composite is provided, comprising a catalyst capable of promoting oxidation of organic molecules incorporated in a carrier, for example a hydrophilic or water-based material, the catalyst configured such that it will not discolor surrounding material under the influence of oxidative conditions
    Type: Application
    Filed: June 26, 2006
    Publication date: June 14, 2007
    Inventors: T. Xiao, Jinxiang Dai, Junfeng Zhou, Meidong Wang, Michael Gray, Gregory Robb, Barry Constantine, David Reisner, Matthew Harriton
  • Patent number: 6794086
    Abstract: A method for the manufacture of an electrode for an energy storage or conversion device comprises thermally spraying a feedstock mixture comprising an effective quantity of a source of a thermally protective salt and an active material or active material precursor onto a substrate to produce a film of the active material and salt. The film can have a thickness of about 1 to about 1000 microns. In a particularly advantageous feature, the active materials which ordinarily decompose or are unavailable at the high temperatures used during thermal spray processes, such as metal chalcogenides such as pyrite, CoS2, WS2, Ni(OH)2, MnO2, and the like may be thermally sprayed to form an electrode when the feedstock mixture employs an effective amount of a source of the thermally protective salt coating. The active material feedstock may comprise microstructured or nanostructured materials, which after thermal spray results in electrodes having microstructured or nanostructured active materials, respectively.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: September 21, 2004
    Assignees: Sandia Corporation, U.S. Nanocorp, Inc.
    Inventors: Jinxiang Dai, Ronald A. Guidotti, Tongsan D. Xiao, David E. Reisner
  • Publication number: 20040018409
    Abstract: A solid oxide fuel cell comprises a dense electrolyte disposed between a porous anode and a porous cathode wherein the dense electrolyte comprises doped lanthanum gallate or yttria stabilized zirconia, the porous anode comprises yttrium-doped strontium titanate, yttrium-doped strontium titanate and nickel, lanthanum-doped ceria and nickel or yttria stabilized zirconia and nickel and the porous cathode comprises doped lanthanum ferrite or strontium-doped lanthanum manganite. The fuel cell may further comprise an interlayer(s) comprising lanthanum-doped ceria disposed between an electrode (anode, cathode or both) and the electrolyte. An interconnect layer comprising doped lanthanum chromate may be disposed between the anode of a first single fuel cell and the cathode of a second single fuel cell. The anode, cathode, electrolyte and optional interlayer(s) are produced by thermal spray.
    Type: Application
    Filed: February 28, 2003
    Publication date: January 29, 2004
    Inventors: Shiqiang Hui, Xinqing Ma, Heng Zhang, Huimin Chen, Jeffrey Roth, John Broadhead, Anthony DeCarmine, Jinxiang Dai, Danny T. Xiao
  • Publication number: 20020018929
    Abstract: A method for the manufacture of an electrode for an energy storage or conversion device comprises thermally spraying a feedstock mixture comprising an effective quantity of a source of a thermally protective salt and an active material or active material precursor onto a substrate to produce a film of the active material and salt. The film can have a thickness of about 1 to about 1000 microns.
    Type: Application
    Filed: February 28, 2001
    Publication date: February 14, 2002
    Inventors: Jinxiang Dai, Ronald A. Guidotti, Tongsan D. Xiao, David E. Reisner