Patents by Inventor Jinxin FU

Jinxin FU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250095958
    Abstract: An ion implanter may include an ion source to generate an ion beam. The ion implanter may include a set of beamline components to direct the ion beam to a substrate along a beam axis, as well as a process chamber to house the substrate to receive the ion beam. The ion implanter may include a conoscopy system, comprising: an illumination source to direct light to a substrate position; a first polarizer, having a first polarization axis, disposed between the illumination source and the substrate position; a second polarizer, the second polarizer being disposed to receive the light after passing through the substrate position. The conoscopy system may include a lens, to receive the light after passing through the substrate position, and a detector, to detect the light after passing through the lens.
    Type: Application
    Filed: August 5, 2024
    Publication date: March 20, 2025
    Applicant: Applied Materials, Inc.
    Inventors: Frank SINCLAIR, Timothy THOMAS, Jinxin FU, Micha NIXON
  • Patent number: 12249489
    Abstract: A method of processing an optical device is provided, including: positioning an optical device on a substrate support in an interior volume of a process chamber, the optical device including an optical device substrate and a plurality of optical device structures formed over the optical device substrate, each optical device structure including a bulk region formed of silicon carbide and one or more surface regions formed of silicon oxycarbide. The method further includes providing one or more process gases to the interior volume of the process chamber, and generating a plasma of the one or more process gases in the interior volume for a first time period when the optical device is on the substrate support, and stopping the plasma after the first time period. A carbon content of the one or more surface regions of each optical device structure is reduced by at least 50% by the plasma.
    Type: Grant
    Filed: April 7, 2023
    Date of Patent: March 11, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Yue Chen, Jinyu Lu, Yongmei Chen, Jinxin Fu, Zihao Yang, Mingwei Zhu, Takashi Kuratomi, Rami Hourani, Ludovic Godet, Qun Jing, Jingyi Yang, David Masayuki Ishikawa
  • Publication number: 20250078424
    Abstract: Embodiments of the present disclosure generally relate to augmented reality (AR) systems. More specifically, embodiments described herein provide for an AR projection system and AR devices having the projection system. In one or more embodiments, an augmented reality device includes a projection system. The projection system includes a light engine. The light engine includes a pixel. The pixel includes an emission surface. A microlens is coupled to the emission surface of the pixel. The projection system further includes a projection lens configured to refract a first light emitted by the pixel. The first light has a first pupil length defined by a distance between a first end and a second end of the first light. The augmented reality device further includes a waveguide including an input coupler configured to incouple the first light at a first bounce length that is equivalent to the first pupil length.
    Type: Application
    Filed: August 22, 2024
    Publication date: March 6, 2025
    Inventors: Jinxin FU, Sihui HE
  • Publication number: 20250068087
    Abstract: Embodiments of the present disclosure generally relate to metrology systems and metrology methods to measure waveguides for image quality standards. In at least one embodiment, an optical device metrology system includes a stage, a body, and a light engine positioned within the body and mounted above the stage. The light engine includes, a light source, a fold mirror angled relative to the light source, the fold mirror is configured to turn a light beam toward the stage, one or more lenses or arrays positioned between the fold mirror and the stage, and a projection lens positioned between the one or more lenses or arrays and the stage. The system further includes, a first detector positioned within the body and mounted above the stage adjacent to the light engine configured to receive the projected light beam projected upwardly from the stage.
    Type: Application
    Filed: August 13, 2024
    Publication date: February 27, 2025
    Inventors: Yangyang SUN, Jinxin FU, Sihui HE
  • Patent number: 12236575
    Abstract: Embodiments of the present disclosure relate to optical devices for augmented, virtual, and/or mixed reality applications. In one or more embodiments, an optical device metrology system is configured to measure a plurality of first metrics and one or more second metrics for optical devices, the one or more second metrics including a display leakage metric.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: February 25, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Yangyang Sun, Jinxin Fu, Kazuya Daito, Ludovic Godet
  • Patent number: 12229940
    Abstract: Embodiments of the present disclosure relate to optical devices for augmented, virtual, and/or mixed reality applications. In one or more embodiments, an optical device metrology system is configured to measure a plurality of first metrics and one or more second metrics for optical devices, the one or more second metrics including a display leakage metric.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: February 18, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Yangyang Sun, Jinxin Fu, Kazuya Daito, Ludovic Godet
  • Publication number: 20250054171
    Abstract: Embodiments herein provide for a method of determining an optical device modulation transfer function (MTF). The method described herein includes projecting a first instance of an image from a light engine to a detector. The first instance of the image is analyzed to determine a first function. A first fast Fourier transform (FFT) or a first MTF of the first function is obtained. The method further includes projecting a second instance of the image from the light engine to detector via one or more optical devices. The second instance of the image is analyzed to determine a second function. A second FFT or a second MTF is obtained of the second function. An optical device MTF of the one or more optical devices is determined by comparing the first FFT and the second FFT or by comparing the first MTF and the second MTF.
    Type: Application
    Filed: October 29, 2024
    Publication date: February 13, 2025
    Inventors: Jinxin FU, Yangyang SUN, Ludovic GODET
  • Publication number: 20250053082
    Abstract: The present disclosure generally relates to methods of forming optical devices comprising nanostructures disposed on transparent substrates. A first process of forming the nanostructures comprises depositing a first layer of a first material on a glass substrate, forming one or more trenches in the first layer, and depositing a second layer of a second material in the one or more holes to trenches a first alternating layer of alternating first portions of the first material and second portions of the second material. The first process is repeated one or more times to form additional alternating layers over the first alternating layer. Each first portion of each alternating layer is disposed in contact with and offset a distance from an adjacent first portion in adjacent alternating layers. A second process comprises removing either the first or the second portions from each alternating layer to form the plurality of nanostructures.
    Type: Application
    Filed: October 31, 2024
    Publication date: February 13, 2025
    Inventors: Yongan XU, Jinxin FU, Jhenghan YANG, Ludovic GODET
  • Publication number: 20250053099
    Abstract: Embodiments described herein provide an asymmetric optical metrology system for evaluating and inspecting the performance of optical devices, such as augmented reality (AR) waveguide combiners. The system utilizes an asymmetric optical configuration and fly-eye illumination to enhance the detection limit of image sharpness and the accuracy of luminance uniformity. By employing different lenses with various focal lengths, the system increases the sampling rate in the angular space, addressing the challenges of form factor limitations and pixel density inherent in conventional metrology tools. Embodiments described herein offer improved contrast and sharp image details, as well as a compact design, making it suitable for the development, optimization, and quality control of optical devices, such as AR waveguide combiners.
    Type: Application
    Filed: August 8, 2024
    Publication date: February 13, 2025
    Inventors: Yangyang SUN, Jinxin FU, Sihui HE, Ludovic GODET
  • Publication number: 20250046026
    Abstract: The present disclosure relates to augmented reality devices and related methods. The augmented reality devices include a projection system. The projection system includes a projector including a major axis. The projected is configured to project an image along the major axis. A prism is configured to refract the image. The image includes a first spectrum, a second spectrum, and a third spectrum. A waveguide is disposed at a wrap angle from a plane formed from the major axis of the projector. The waveguide includes an input coupler, and an output coupler.
    Type: Application
    Filed: August 2, 2024
    Publication date: February 6, 2025
    Inventors: David Alexander SELL, Sihui HE, Kevin MESSER, Kunal SHASTRI, Jinxin FU, Samarth BHARGAVA
  • Patent number: 12203747
    Abstract: Embodiments described herein provide for devices and methods of measuring a pitch P of optical device structures and an orientation angle ? of the optical device structures. One embodiment of the system includes an optical arm coupled to an arm actuator. The optical arm includes a light source. The light source emits a light path operable to be diffracted to the stage. The optical arm further includes a first beam splitter and a second beam splitter positioned in the light path. The first beam splitter directs the light path through a first lens and the second beam splitter directs the light path through a first dove prism and a second lens. The optical arm further includes a first detector operable to detect the light path from the first lens and second detector operable to detect the light path from the second lens.
    Type: Grant
    Filed: January 9, 2024
    Date of Patent: January 21, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Yangyang Sun, Jinxin Fu, Ludovic Godet
  • Publication number: 20250020921
    Abstract: Embodiments described herein relate to an augmented reality (AR) system. The AR system includes a projection system and an optical device. The projection system includes a backlight, a lens, and an illumination system. The illumination system is configured to receive light from the backlight and emit light having a first color trend. The light having a first color trend is emitted through the lens towards the optical device. The optical device is configured to form a second color trend. The second color trend is opposite the first color trend.
    Type: Application
    Filed: July 10, 2024
    Publication date: January 16, 2025
    Inventors: Jinxin FU, Sihui HE
  • Patent number: 12165341
    Abstract: Embodiments herein provide for a method of determining an optical device modulation transfer function (MTF). The method described herein includes projecting a baseline image of a pattern from a light engine to a detector. The baseline image is analyzed to determine a baseline function. A baseline fast Fourier transform (FFT) or a baseline MTF of the baseline function is obtained. The method further includes projecting an image of the pattern from the light engine to one or more optical devices. The pattern is outcoupled from the one or more optical devices to the detector. The image is analyzed to determine a function. A function FFT or a function MTF is obtained corresponding to the image. An optical device MTF of the one or more optical devices is determined by comparing the baseline FFT and the function FFT determined by analyzing the image or by comparing the baseline MTF and the function MTF determined by analyzing the image.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: December 10, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Jinxin Fu, Yangyang Sun, Ludovic Godet
  • Patent number: 12159392
    Abstract: Embodiments of the present disclosure include a die system and a method of comparing alignment vectors. The die system includes a plurality of dies arranged in a desired pattern. An alignment vector, such as a die vector, can be determined from edge features of the die. The alignment vectors can be compared to other dies or die patterns in the same system. A method of comparing dies and die patterns includes comparing die vectors and/or pattern vectors. The comparison between alignment vectors allows for fixing the die patterns for the next round of processing. The methods provided allow accurate comparisons between as-deposited edge features, such that accurate stitching of dies can be achieved.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: December 3, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yongan Xu, Chan Juan Xing, Jinxin Fu, Yifei Wang, Ludovic Godet
  • Patent number: 12153344
    Abstract: The present disclosure generally relates to methods of forming optical devices comprising nanostructures disposed on transparent substrates. A first process of forming the nanostructures comprises depositing a first layer of a first material on a glass substrate, forming one or more trenches in the first layer, and depositing a second layer of a second material in the one or more holes to trenches a first alternating layer of alternating first portions of the first material and second portions of the second material. The first process is repeated one or more times to form additional alternating layers over the first alternating layer. Each first portion of each alternating layer is disposed in contact with and offset a distance from an adjacent first portion in adjacent alternating layers. A second process comprises removing either the first or the second portions from each alternating layer to form the plurality of nanostructures.
    Type: Grant
    Filed: September 1, 2023
    Date of Patent: November 26, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yongan Xu, Jinxin Fu, Jhenghan Yang, Ludovic Godet
  • Publication number: 20240385075
    Abstract: Embodiments described herein provide for light engines of a measurement system and methods of using the light engines. The measurement system includes a light engine operable to illuminate a first grating of an optical device. The light engine projects a pattern with a light from a light engine. The light engine projects a pattern to the first grating such that a metrology metric may be extracted from one or more images captured by a detector of the measurement system. The metrology metrics are extracted by processing the image. The metrology metrics determine if the optical device meets image quality standards.
    Type: Application
    Filed: May 17, 2024
    Publication date: November 21, 2024
    Inventors: Yangyang SUN, Jinxin FU, Kazuya DAITO, Ludovic GODET
  • Patent number: 12140494
    Abstract: A method of optical device metrology is provided. The method includes introducing a first type of light into a first optical device during a first time period, the first optical device including an optical substrate and an optical film disposed on the optical substrate, the first optical device further including a first surface, a second surface, and one or more sides connecting the first surface with the second surface; and measuring, during the first time period, a quantity of the first type of light transmitted from a plurality of locations on the first surface or the second surface during the first time period, wherein the measuring is performed by a detector coupled to one or more fiber heads positioned to collect the light transmitted from the plurality of locations.
    Type: Grant
    Filed: December 27, 2023
    Date of Patent: November 12, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jinxin Fu, Kang Luo, Fariah Hayee, Ludovic Godet
  • Publication number: 20240329322
    Abstract: Embodiments described herein relate to improved waveguides with materials layers improving the optical properties of one or more surface regions of waveguides and methods of forming the same. In one embodiment, a waveguide is provided. The waveguide including a substrate, a grating disposed in or on the substrate, the grating comprising a plurality of structures defined by a plurality of trenches, a layer of silicon oxide or aluminum oxide disposed over the structures on the substrate. The layer is disposed over sidewalls and top surfaces of the structures, and a bottom surface of the trenches. The waveguide further includes a high index layer disposed over the layer. The high index layer is disposed over the sidewalls and the top surfaces of the structures, and the bottom surface of the trenches with the layer disposed in between the structures and the high index layer.
    Type: Application
    Filed: April 3, 2024
    Publication date: October 3, 2024
    Inventors: Jinyu LU, Ludovic Godet, Jinxin FU, Kenichi OHNO, Shangyi Chen, Takashi KURATOMI, Erica CHEN, Rami HURARNI, Yangyang SUN
  • Publication number: 20240310639
    Abstract: Metrology tools and methods of obtaining a full-field optical field of an optical device to determine multiple metrology metrics of the optical device are provided. A metrology tool is utilized to split a light beam into a first light path and a second light path. The first light path and the second light path are combined into a combined light beam and delivered to the detector. The detector measures the intensity of the combined light beam. A first equation and second equation are utilized in combination with the intensity measurements to determine an amplitude and phase ? at a reference point directly adjacent to a second surface of the at least one optical device.
    Type: Application
    Filed: May 28, 2024
    Publication date: September 19, 2024
    Inventors: Yangyang SUN, Jinxin FU, Ludovic GODET
  • Patent number: 12085475
    Abstract: A method and apparatus for determining a line angle and a line angle rotation of a grating or line feature is disclosed. An aspect of the present disclosure involves, measuring coordinate points of a first line feature using a measurement tool, determining a first slope of the first line feature from the coordinate points, and determining a first line angle from the slope of the first line feature. This process can be repeated to find a second slope of a second line feature that is adjacent to the first line feature. The slope of the first and second line features can be compared to find a line angle rotation. The line angle rotation is compared to a design specification and a stitch quality is determined.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: September 10, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yongan Xu, Chan Juan Xing, Jinxin Fu, Ludovic Godet