Patents by Inventor Jiong Jiang

Jiong Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240158417
    Abstract: A substituted heterocyclic fused cyclic compound as represented by formula (I) or formula (IA) and having a selective inhibitory effect on KRAS gene mutation, or a pharmaceutically-acceptable salt, a stereoisomer, a solvate or a prodrug thereof, a pharmaceutical composition containing the compound, and an application thereof in preparation of cancer drugs are provided.
    Type: Application
    Filed: October 17, 2023
    Publication date: May 16, 2024
    Applicants: GENFLEET THERAPEUTICS (SHANGHAI) INC., ZHEJIANG GENFLEET THERAPEUTICS CO.,LTD.
    Inventors: Fusheng ZHOU, Tao JIANG, Chonglan LIN, Lijian CAI, Wan HE, Jiong LAN
  • Patent number: 10423745
    Abstract: A method for reducing an effect of flare produced by a lithographic apparatus for imaging a design layout onto a substrate is described. A flare map in an exposure field of the lithographic apparatus is simulated by mathematically combining a density map of the design layout at the exposure field with a point spread function (PSF), wherein system-specific effects on the flare map may be incorporated in the simulation. Location-dependent flare corrections for the design layout are calculated by using the determined flare map, thereby reducing the effect of flare.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: September 24, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Hua-Yu Liu, Jiangwei Li, Luoqi Chen, Wei Liu, Jiong Jiang
  • Publication number: 20150058815
    Abstract: A method for reducing an effect of flare produced by a lithographic apparatus for imaging a design layout onto a substrate is described. A flare map in an exposure field of the lithographic apparatus is simulated by mathematically combining a density map of the design layout at the exposure field with a point spread function (PSF), wherein system-specific effects on the flare map may be incorporated in the simulation. Location-dependent flare corrections for the design layout are calculated by using the determined flare map, thereby reducing the effect of flare.
    Type: Application
    Filed: November 10, 2014
    Publication date: February 26, 2015
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Hua-Yu LIU, Jiangwei LI, Luoqi CHEN, Wei Liu, Jiong Jiang
  • Patent number: 8887104
    Abstract: A method for reducing an effect of flare produced by a lithographic apparatus for imaging a design layout onto a substrate is described. A flare map in an exposure field of the lithographic apparatus is simulated by mathematically combining a density map of the design layout at the exposure field with a point spread function (PSF), wherein system-specific effects on the flare map may be incorporated in the simulation. Location-dependent flare corrections for the design layout are calculated by using the determined flare map, thereby reducing the effect of flare. Some of the system-specific effects included in the simulation are: a flare effect due to reflection from black border of a mask, a flare effect due to reflection from one or more reticle-masking blades defining an exposure slit, a flare effect due to overscan, a flare effect due reflections from a gas-lock sub-aperture of a dynamic gas lock (DGL) mechanism, and a flare effect due to contribution from neighboring exposure fields.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: November 11, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Hua-Yu Liu, Jiangwei Li, Luoqi Chen, Wei Liu, Jiong Jiang
  • Publication number: 20130185681
    Abstract: A method for reducing an effect of flare produced by a lithographic apparatus for imaging a design layout onto a substrate is described. A flare map in an exposure field of the lithographic apparatus is simulated by mathematically combining a density map of the design layout at the exposure field with a point spread function (PSF), wherein system-specific effects on the flare map may be incorporated in the simulation. Location-dependent flare corrections for the design layout are calculated by using the determined flare map, thereby reducing the effect of flare. Some of the system-specific effects included in the simulation are: a flare effect due to reflection from black border of a mask, a flare effect due to reflection from one or more reticle-masking blades defining an exposure slit, a flare effect due to overscan, a flare effect due reflections from a gas-lock sub-aperture of a dynamic gas lock (DGL) mechanism, and a flare effect due to contribution from neighboring exposure fields.
    Type: Application
    Filed: September 1, 2011
    Publication date: July 18, 2013
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Hua-Yu Liu, Jiangwei Li, Luoqi Chen, Wei Liu, Jiong Jiang