Patents by Inventor Jiong Zou

Jiong Zou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11112377
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: September 7, 2021
    Assignee: DexCom, Inc.
    Inventors: Shanger Wang, Ted Tang Lee, Jiong Zou
  • Patent number: 11058329
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: July 13, 2021
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, Maria Noel Brown Wells, John Patrick Majewski, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Patent number: 10827955
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: November 10, 2020
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, John Patrick Majewski, Maria Noel Brown Wells, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Publication number: 20200205705
    Abstract: Various examples described herein are directed to systems, apparatuses, and methods for mitigating break-in in an analyte sensor. An example analyte sensor system comprises an analyte sensor applicator comprising a needle; an analyte sensor comprising at least a working electrode and a reference electrode, the analyte sensor positioned at least partially within a lumen of the needle; and a hydrating agent positioned within the lumen of the needle to at least partially hydrate the needle.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Ted Tang Lee, Anna Leigh Davis, Peter C. Simpson, Liang Wang, Shanger Wang, Jiong Zou, Stephen J. Vanslyke, Rui Ma, Wenjie Lan
  • Publication number: 20180199886
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: January 16, 2018
    Publication date: July 19, 2018
    Inventors: Sebastian Bohm, Pradnya Prakash Samant, Jiong Zou
  • Publication number: 20180199873
    Abstract: Flexible analyte sensors are provided. Flexible analyte sensors may be flexible continuous analyte sensors that facilitate continuous monitoring of an analyte such as blood glucose. The flexible analyte sensor may have a relatively flexible conductive or non-conductive core, may be formed from a plurality of substantially planar layers, or may be configured to transform from a freestanding sensor ex vivo to a non-freestanding sensor in vivo.
    Type: Application
    Filed: January 18, 2018
    Publication date: July 19, 2018
    Inventors: Shanger Wang, Devon M. Headen, Sebastian Bohm, Jonathan Hughes, Ted Tang Lee, Peter C. Simpson, Jiong Zou
  • Publication number: 20180116570
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 3, 2018
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, Maria Noel Brown Wells, John Patrick Majewski, Leah Ebuen Morta, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Publication number: 20180116572
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 3, 2018
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, John Patrick Majewski, Maria Noel Brown Wells, Leah Ebuen Morta, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Publication number: 20170188921
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Shanger Wang, Ted Tang Lee, Jiong Zou
  • Publication number: 20170191955
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Jiong Zou, Robert J. Boock, Andrew Trinin Dennis, Ted Tang Lee, Jeff T. Suri, David Sze, Mark A. Tapsak, Huashi Zhang, Shanger Wang
  • Publication number: 20170188902
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Shanger Wang, Ted Tang Lee, Jiong Zou
  • Publication number: 20170188905
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises a biointerface layer which interfaces with a biological fluid containing the analyte to be measured. The biointerface layer comprises a biointerface polymer, wherein the biointerface polymer comprises polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The biointerface layer increases sensor longevity and decrease sensor inaccuracy by inhibiting accumulation of cells, proteins, and other biological species on the outermost layers of the sensor.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Ted Tang Lee, Andrew Trinin Dennis, Shanger Wang, Jiong Zou
  • Publication number: 20170188923
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Jiong Zou, Robert J. Boock, Andrew Trinin Dennis, Ted Tang Lee, Jeff T. Suri, David Sze, Mark A. Tapsak, Huashi Zhang, Shanger Wang
  • Publication number: 20170188916
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises a biointerface layer which interfaces with a biological fluid containing the analyte to be measured. The biointerface layer can comprises a biointerface polymer, wherein the biointerface polymer comprises polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The sensing membrane can also comprise an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The sensing membrane can also comprise a diffusion-resistance layer, which can comprise a base polymer having a lowest Tg of greater than ?50 C.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 6, 2017
    Inventors: Shanger Wang, Robert J. Boock, Andrew Trinin Dennis, Ted Tang Lee, Jeff T. Suri, David Sze, Mark A Tapsak, Huashi Zhang, Jiong Zou
  • Publication number: 20170188922
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises a biointerface layer which interfaces with a biological fluid containing the analyte to be measured. The biointerface layer comprises a biointerface polymer, wherein the biointerface polymer comprises polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The biointerface layer increases sensor longevity and decrease sensor inaccuracy by inhibiting accumulation of cells, proteins, and other biological species on the outermost layers of the sensor.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Ted Tang Lee, Andrew Trinin Dennis, Shanger Wang, Jiong Zou
  • Patent number: 9545447
    Abstract: The present disclosure generally relates to polymer-drug systems, and more particularly to nanoscopic particles comprising amphiphilic block copolymers conjugated, physically encapsulated, or otherwise combined with chemotherapeutic agents along a selective region or regions of the backbone of the copolymer, so as to package the chemotherapeutic agent in selective domains within each nanoscopic particle, as well as to methods for making such particles, and applications and methods for using such particles, including in the formation of polymer micelles.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: January 17, 2017
    Assignee: The Texas A&M University System
    Inventors: Karen Wooley, Jiong Zou, Mahmoud El Sabahy, Shiyi Zhang, Fuwu Zhang
  • Publication number: 20140193504
    Abstract: The present disclosure generally relates to polymer-drug systems, and more particularly to nanoscopic particles comprising amphiphilic block copolymers conjugated, physically encapsulated, or otherwise combined with chemotherapeutic agents along a selective region or regions of the backbone of the copolymer, so as to package the chemotherapeutic agent in selective domains within each nanoscopic particle, as well as to methods for making such particles, and applications and methods for using such particles, including in the formation of polymer micelles.
    Type: Application
    Filed: October 1, 2013
    Publication date: July 10, 2014
    Inventors: Karen Wooley, Jiong Zou, Mahmoud El Sabahy, Shiyi Zhang, Fuwu Zhang