Patents by Inventor Jirí Petrek

Jirí Petrek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11598733
    Abstract: The invention relates to a method of examining a sample using a charged particle microscope, comprising the steps of providing a charged particle beam, as well as a sample; scanning said charged particle beam over said sample; and detecting, using a first detector, emissions of a first type from the sample in response to the beam scanned over the sample. Spectral information of detected emissions of the first type is used for assigning a plurality of mutually different phases to said sample. In a further step, a corresponding plurality of different color hues—with reference to an HSV color space—are associated to said plurality of mutually different phases. Using a second detector, emissions of a second type from the sample in response to the beam scanned over the sample are detected. Finally an image representation of said sample is provided.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: March 7, 2023
    Assignee: FEI Company
    Inventors: Tomas Tûma, Jan Klusá{hacek over (c)}ek, Jiri Petrek
  • Publication number: 20210033548
    Abstract: The invention relates to a method of examining a sample using a charged particle microscope, comprising the steps of providing a charged particle beam, as well as a sample; scanning said charged particle beam over said sample; and detecting, using a first detector, emissions of a first type from the sample in response to the beam scanned over the sample. Spectral information of detected emissions of the first type is used for assigning a plurality of mutually different phases to said sample. In a further step, a corresponding plurality of different color hues—with reference to an HSV color space—are associated to said plurality of mutually different phases. Using a second detector, emissions of a second type from the sample in response to the beam scanned over the sample are detected. Finally an image representation of said sample is provided.
    Type: Application
    Filed: July 28, 2020
    Publication date: February 4, 2021
    Applicant: FEI Company
    Inventors: Tomás Tuma, Jan Klusácek, Jiri Petrek
  • Publication number: 20200393392
    Abstract: The invention relates to a method of examining a sample using a charged particle microscope, comprising the steps of providing a charged particle beam, as well as a sample; scanning said charged particle beam over said sample at a plurality of sample locations; and detecting, using a first detector, emissions of a first type from the sample in response to the beam scanned over the plurality of sample locations. Spectral information of detected emissions of the first type is used to assign a plurality of mutually different phases to said sample at said plurality of sample locations. Information relating to at least one previously assigned phase and its respective sample location is used for establishing an estimated phase for at least one other of the plurality of sample locations. Said estimated phase is assigned to said other sample location. A control unit is used to provide a data representation of said sample containing at least information on said plurality of sample locations and said phases.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 17, 2020
    Applicant: FEI Company
    Inventors: Jan Klusácek, Tomás Tuma, Jirí Petrek
  • Publication number: 20200355633
    Abstract: The invention relates to a method of examining a sample using a charged particle microscope, comprising the steps of providing a charged particle beam, as well as a sample, and scanning said charged particle beam over said sample. A first detector is used for detecting emissions of a first type from the sample in response to the beam scanned over the sample. Using spectral information of detected emissions of the first type, a plurality of mutually different phases are assigned to said sample. An image representation of said sample is provided, wherein said image representation contains different color hues. The color hues are selected from a pre-selected range of consecutive color hues in such a way that the selected color hues comprise mutually corresponding intervals within said pre-selected range of consecutive color hues.
    Type: Application
    Filed: May 6, 2020
    Publication date: November 12, 2020
    Applicant: FEI Company
    Inventors: Jan Klusácek, Tomás Tuma, Jirí Petrek