Patents by Inventor Jiri Kutej

Jiri Kutej has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11269067
    Abstract: Piezoelectric sensor controllers may facilitate detection and identification of various potential fault states with parameter measurements. In an illustrative embodiment of a piezoelectric-based sensor having response-parameter-based fault diagnosis, the sensor includes a piezoelectric transducer and a controller. The controller drives the piezoelectric transducer to generate bursts of acoustic energy and, based on a response of the piezoelectric transducer to said driving, identifies a corresponding transducer state from a set of potential states including multiple transducer fault states.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: March 8, 2022
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jiri Kutej, Tomas Suchy, Marek Hustava, Pavel Horsky, Zdenek Axman
  • Patent number: 11194028
    Abstract: Piezoelectric sensor controllers may facilitate detection and identification of various potential fault states with novel parameter measurements. In an illustrative embodiment of a piezoelectric-based sensor having a shorted-reverberation based resonant frequency measurement, the sensor includes a piezoelectric transducer that provides residual reverberation after being driven. The sensor further includes a controller that provides a low impedance path for the piezoelectric transducer during the residual reverberation and that measures current through the low impedance path to determine a resonant frequency of the piezoelectric transducer.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: December 7, 2021
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jiri Kutej, Tomas Suchy, Marek Hustava, Pavel Horsky, Zdenek Axman
  • Publication number: 20200413188
    Abstract: An obstacle monitoring system includes a transducer that receives an ultrasonic echo from an obstacle and generates a signal based on the echo. The system further includes a controller coupled to the transducer that is calibrated based on a frequency response of the transducer and a coupling circuit. The system further includes circuitry generating a damping current, controlled by the controller, that reduces or eliminates reverberation of the transducer.
    Type: Application
    Filed: September 15, 2020
    Publication date: December 31, 2020
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Marek HUSTAVA, Tomas SUCHY, Michal NAVRATIL, Jiri KUTEJ
  • Patent number: 10585178
    Abstract: An illustrative controller embodiment includes: a transmitter that causes reverberation of a piezoelectric transducer; and a linear damping module that measures characteristics of the reverberation and tunes at least one of a shunt resistance and a shunt reactance for the piezoelectric transducer based on said characteristics. An illustrative sensor embodiment includes: a piezoelectric transducer; and a transducer controller coupled to the piezoelectric transducer to transmit pulses and receive echoes for measuring distances. The controller includes a linear damping module with: a shunt resistance; a shunt inductance; and an optional switch that couples the shunt resistance and shunt inductance in parallel to the piezoelectric transducer to damp reverberation of the piezoelectric transducer after said transmit pulses. The controller measures at least one characteristic of said reverberation and responsively tunes the shunt resistance or the shunt inductance.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: March 10, 2020
    Assignee: SEMICONDUCTOR COMPONENENTS INDUSTRIES, LLC
    Inventors: Ivan Koudar, Jan Ledvina, Jiri Kutej, Pavel Horsky
  • Publication number: 20190079174
    Abstract: Piezoelectric sensor controllers may facilitate detection and identification of various potential fault states with novel parameter measurements. In an illustrative embodiment of a piezoelectric-based sensor having a shorted-reverberation based resonant frequency measurement, the sensor includes a piezoelectric transducer that provides residual reverberation after being driven. The sensor further includes a controller that provides a low impedance path for the piezoelectric transducer during the residual reverberation and that measures current through the low impedance path to determine a resonant frequency of the piezoelectric transducer.
    Type: Application
    Filed: February 5, 2018
    Publication date: March 14, 2019
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jiri KUTEJ, Tomas SUCHY, Marek HUSTAVA, Pavel HORSKY, Zdenek AXMAN
  • Publication number: 20190079173
    Abstract: Piezoelectric sensor controllers may facilitate detection and identification of various potential fault states with novel parameter measurements. In an illustrative embodiment of a piezoelectric-based sensor having response-parameter-based fault diagnosis, the sensor includes a piezoelectric transducer and a controller. The controller drives the piezoelectric transducer to generate bursts of acoustic energy and, based on a response of the piezoelectric transducer to said driving, identifies a corresponding transducer state from a set of potential states including multiple transducer fault states.
    Type: Application
    Filed: February 5, 2018
    Publication date: March 14, 2019
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jiri KUTEJ, Tomas SUCHY, Marek HUSTAVA, Pavel HORSKY, Zdenek AXMAN
  • Patent number: 10179346
    Abstract: In one embodiment, a transducer controller is configured to form a drive signal with a first frequency to drive a transducer. The drive signal has a period and a half-period and drives the transducer for a first portion of the half-period. The transducer controller is configured to, for a second portion of the half-period, sense a voltage formed by the transducer, measure portions of the voltage and estimate a phase error between the first frequency and a resonant frequency of the transducer, and to adjust the first frequency to a second frequency that reduces the phase error.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: January 15, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jiri Kutej, Pavel Horsky
  • Publication number: 20180160226
    Abstract: An obstacle monitoring system includes a transducer that receives an ultrasonic echo from an obstacle and generates a signal based on the echo. The system further includes a controller coupled to the transducer that is calibrated based on a frequency response of the transducer and a coupling circuit. The system further includes circuitry generating a damping current, controlled by the controller, that reduces or eliminates reverberation of the transducer.
    Type: Application
    Filed: October 16, 2017
    Publication date: June 7, 2018
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Marek HUSTAVA, Tomas SUCHY, Michal NAVRATIL, Jiri KUTEJ
  • Publication number: 20180021811
    Abstract: In one embodiment, a transducer controller is configured to form a drive signal with a first frequency to drive a transducer. The drive signal has a period and a half-period and drives the transducer for a first portion of the half-period. The transducer controller is configured to, for a second portion of the half-period, sense a voltage formed by the transducer, measure portions of the voltage and estimate a phase error between the first frequency and a resonant frequency of the transducer, and to adjust the first frequency to a second frequency that reduces the phase error.
    Type: Application
    Filed: October 4, 2016
    Publication date: January 25, 2018
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jiri KUTEJ, Pavel HORSKY
  • Publication number: 20170115382
    Abstract: An illustrative controller embodiment includes: a transmitter that causes reverberation of a piezoelectric transducer; and a linear damping module that measures characteristics of the reverberation and tunes at least one of a shunt resistance and a shunt reactance for the piezoelectric transducer based on said characteristics. An illustrative sensor embodiment includes: a piezoelectric transducer; and a transducer controller coupled to the piezoelectric transducer to transmit pulses and receive echoes for measuring distances. The controller includes a linear damping module with: a shunt resistance; a shunt inductance; and an optional switch that couples the shunt resistance and shunt inductance in parallel to the piezoelectric transducer to damp reverberation of the piezoelectric transducer after said transmit pulses. The controller measures at least one characteristic of said reverberation and responsively tunes the shunt resistance or the shunt inductance.
    Type: Application
    Filed: July 12, 2016
    Publication date: April 27, 2017
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Ivan KOUDAR, Jan LEDVINA, Jiri KUTEJ, Pavel HORSKY
  • Patent number: 8878518
    Abstract: A mode detector in a sensor interface is configured to detect a mode specified by a mode signal when an input signal received from a side of a first terminal is the mode signal. A communication portion in the interface transmits an electric signal, obtained from a sensor circuit, to a side of a second terminal when a mode detected with the detector is a sensor output mode. The communication portion receives an input signal from the side of the first terminal while transmitting an output signal to the side of the second terminal, when a mode detected with the detector is a communication mode.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: November 4, 2014
    Assignee: Panasonic Corporation
    Inventors: Masahisa Niwa, Kunitaka Okada, Rudolf Hajek, Jiri Kutej, Timothy J. Warneck
  • Publication number: 20140035558
    Abstract: A mode detector in a sensor interface is configured to detect a mode specified by a mode signal when an input signal received from a side of a first terminal is the mode signal. A communication portion in the interface transmits an electric signal, obtained from a sensor circuit, to a side of a second terminal when a mode detected with the detector is a sensor output mode. The communication portion receives an input signal from the side of the first terminal while transmitting an output signal to the side of the second terminal, when a mode detected with the detector is a communication mode.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Inventors: Masahisa NIWA, Kunitaka Okada, Rudolf Hajek, Jiri Kutej, Timothy J. Warneck