Patents by Inventor Jiro Moriya

Jiro Moriya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080136262
    Abstract: A power supply system is provided. The power supply system includes electronic equipment adapted to control power supply based on battery identification information from a battery installed in a battery housing section; and a power supply plate, the power supply plate including a plate main body installed in the battery housing section of the electronic equipment, and a cable, one end of which is connected to the plate main body and the other end of which is led through a lead-out hole of the battery housing section out of the electronic equipment, the other end also having a connector formed thereon which is connected to a power source, wherein power is supplied from the power source connected to the connector of the power supply plate to the electronic equipment.
    Type: Application
    Filed: November 15, 2007
    Publication date: June 12, 2008
    Applicant: SONY CORPORATION
    Inventors: Mieko Hara, Yoichi Miyajima, Hiroaki Sato, Yoshihito Tamesue, Mitsuo Yamaguchi, Shoichi Shintani, Shinji Suzuki, Masashi Kumada, Ryoichi Nakashima, Jiro Moriya, Hisashi Aoki
  • Patent number: 7122280
    Abstract: A square substrate has a pair of opposed major surfaces and peripheral end faces therebetween, wherein a tapered edge portion is disposed between the peripheral end face and each major surface to define an inner boundary with the major surface, and has a width of 0.2–1 mm from the peripheral end face. Both or either one of the major surfaces of the substrate has a flatness of up to 0.5 ?m in an outside region of the substrate that extends between a position spaced 3 mm inward from the peripheral end face and the inner boundary of the tapered edge portion.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: October 17, 2006
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Jiro Moriya, Masataka Watanabe, Satoshi Okazaki
  • Publication number: 20050132753
    Abstract: A method for manufacturing an optical fiber comprises setting a heating condition for heating a glass rod, which is a parent material of the optical-fiber, and an elongating speed of the glass rod based on a prescribed numerical value which changes with a progress of elongation of the glass rod; heating and elongating the glass rod to generate a preform based on the heating condition and the elongating speed which are set by the setting; and drawing the preform to a filament-like form by further heating the preform to generate the optical fiber.
    Type: Application
    Filed: February 1, 2005
    Publication date: June 23, 2005
    Inventors: Yoshiaki Shimizu, Takaaki Nagano, Tadakatsu Shimada, Hideo Hirasawa, Masataka Watanabe, Kazuhisa Hatayama, Mitsukuni Sakashita, Minoru Taya, Waichi Yamamura, Shinji Suzuki, Jiro Moriya
  • Patent number: 6848276
    Abstract: A method for manufacturing an optical fiber comprises setting a heating condition for heating a glass rod, which is a parent material of the optical fiber, and an elongating speed of the glass rod based on a prescribed numerical value which changes with a progress of elongation of the glass rod; heating and elongating the glass rod to generate a preform based on the heating condition and the elongating speed which are set by the setting; and drawing the preform to a filament-like form by further heating the preform to generate the optical fiber.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: February 1, 2005
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshiaki Shimizu, Takaaki Nagano, Tadakatsu Shimada, Hideo Hirasawa, Masataka Watanabe, Kazuhisa Hatayama, Mitsukuni Sakashita, Minoru Taya, Waichi Yamamura, Shinji Suzuki, Jiro Moriya
  • Patent number: 6790129
    Abstract: An angular substrate polishing method includes the steps of holding an angular substrate having a surface to be polished within a guide ring of a substrate holding head; pressing the substrate surface to be polished, and also one surface of the guide ring, against a polishing pad; and independently rotating the polishing pad and the substrate-holding head together with the substrate it holds while pressing the polishing pad-contacting surface of the guide ring against the polishing pad, to thereby polish the substrate surface. During the polishing step, a pressing force is applied to the guide ring which is separate from the pressing force applied to the substrate, enhancing the flatness of the polished substrate.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: September 14, 2004
    Assignee: Shin-Etsu Chemical Co., Ltd
    Inventors: Jiro Moriya, Masataka Watanabe, Satoshi Okazaki, Hidekazu Ozawa, You Ishii, Shunichiro Kojima
  • Patent number: 6779362
    Abstract: A method for manufacturing an optical fiber comprises setting a heating condition for heating a glass rod, which is a parent material of the optical fiber, and an elongating speed of the glass rod based on a prescribed numerical value which changes with a progress of elongation of the glass rod; heating and elongating the glass rod to generate a preform based on the heating condition and the elongating speed which are set by the setting; and drawing the preform to a filament-like form by further heating the preform to generate the optical fiber.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: August 24, 2004
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshiaki Shimizu, Takaaki Nagano, Tadakatsu Shimada, Hideo Hirasawa, Masataka Watanabe, Kazuhisa Hatayama, Mitsukuni Sakashita, Minoru Taya, Waichi Yamamura, Shinji Suzuki, Jiro Moriya
  • Publication number: 20030036340
    Abstract: An angular substrate polishing method includes the steps of holding an angular substrate having a surface to be polished within a guide ring of a substrate holding head; pressing the substrate surface to be polished, and also one surface of the guide ring, against a polishing pad; and independently rotating the polishing pad and the substrate-holding head together with the substrate it holds while pressing the polishing pad-contacting surface of the guide ring against the polishing pad, to thereby polish the substrate surface. During the polishing step, a pressing force is applied to the guide ring which is separate from the pressing force applied to the substrate, enhancing the flatness of the polished substrate.
    Type: Application
    Filed: August 8, 2002
    Publication date: February 20, 2003
    Inventors: Jiro Moriya, Masataka Watanabe, Satoshi Okazaki, Hidekazu Ozawa, You Ishii, Shunichiro Kojima
  • Publication number: 20030031890
    Abstract: A square substrate has a pair of opposed major surfaces and peripheral end faces therebetween, wherein a tapered edge portion is disposed between the peripheral end face and each major surface to define an inner boundary with the major surface, and has a width of 0.2-1 mm from the peripheral end face. Both or either one of the major surfaces of the substrate has a flatness of up to 0.5 &mgr;m in an outside region of the substrate that extends between a position spaced 3 mm inward from the peripheral end face and the inner boundary of the tapered edge portion.
    Type: Application
    Filed: August 8, 2002
    Publication date: February 13, 2003
    Inventors: Jiro Moriya, Masataka Watanabe, Satoshi Okazaki
  • Patent number: 6511778
    Abstract: A phase shift mask blank comprising a transparent substrate and at least one layer of a phase shifter thereon, wherein the phase shifter is a film composed primarily of a fluorine-doped metal silicide, can be fabricated into a high-performance phase shift mask having adequate transmittance and good stability over time even when used with light sources that emit short-wavelength light. The phase shift mask can be used to fabricate semiconductor integrated circuits to a smaller minimum feature size and a higher level of integration.
    Type: Grant
    Filed: January 4, 2001
    Date of Patent: January 28, 2003
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Satoshi Okazaki, Ichiro Kaneko, Jiro Moriya, Masayuki Suzuki, Tamotsu Maruyama
  • Publication number: 20020152772
    Abstract: A method for manufacturing an optical fiber comprises setting a heating condition for heating a glass rod, which is a parent material of the optical fiber, and an elongating speed of the glass rod based on a prescribed numerical value which changes with a progress of elongation of the glass rod; heating and elongating the glass rod to generate a preform based on the heating condition and the elongating speed which are set by the setting; and drawing the preform to a filament-like form by further heating the preform to generate the optical fiber.
    Type: Application
    Filed: June 3, 2002
    Publication date: October 24, 2002
    Inventors: Yoshiaki Shimizu, Takaaki Nagano, Tadakatsu Shimada, Hideo Hirasawa, Masataka Watanabe, Kazuhisa Hatayama, Mitsukuni Sakashita, Minoru Taya, Waichi Yamamura, Shinji Suzuki, Jiro Moriya
  • Publication number: 20020148257
    Abstract: A method for manufacturing an optical fiber comprises setting a heating condition for heating a glass rod, which is a parent material of the optical fiber, and an elongating speed of the glass rod based on a prescribed numerical value which changes with a progress of elongation of the glass rod; heating and elongating the glass rod to generate a preform based on the heating condition and the elongating speed which are set by the setting; and drawing the preform to a filament-like form by further heating the preform to generate the optical fiber.
    Type: Application
    Filed: June 3, 2002
    Publication date: October 17, 2002
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshiaki Shimizu, Takaaki Nagano, Tadakatsu Shimada, Hideo Hirasawa, Masataka Watanabe, Kazuhisa Hatayama, Mitsukuni Sakashita, Minoru Taya, Waichi Yamamura, Shinji Suzuki, Jiro Moriya
  • Publication number: 20020144520
    Abstract: A method for manufacturing an optical fiber comprises setting a heating condition for heating a glass rod, which is a parent material of the optical fiber, and an elongating speed of the glass rod based on a prescribed numerical value which changes with a progress of elongation of the glass rod; heating and elongating the glass rod to generate a preform based on the heating condition and the elongating speed which are set by the setting; and drawing the preform to a filament-like form by further heating the preform to generate the optical fiber.
    Type: Application
    Filed: June 3, 2002
    Publication date: October 10, 2002
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshiaki Shimizu, Takaaki Nagano, Tadakatsu Shimada, Hideo Hirasawa, Masataka Watanabe, Kazuhisa Hatayama, Mitsukuni Sakashita, Minoru Taya, Waichi Yamamura, Shinji Suzuki, Jiro Moriya
  • Publication number: 20020139149
    Abstract: A method for manufacturing an optical fiber comprises setting a heating condition for heating a glass rod, which is a parent material of the optical fiber, and an elongating speed of the glass rod based on a prescribed numerical value which changes with a progress of elongation of the glass rod; heating and elongating the glass rod to generate a preform based on the heating condition and the elongating speed which are set by the setting; and drawing the preform to a filament-like form by further heating the preform to generate the optical fiber.
    Type: Application
    Filed: June 3, 2002
    Publication date: October 3, 2002
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshiaki Shimizu, Takaaki Nagano, Tadakatsu Shimada, Hideo Hirasawa, Masataka Watanabe, Kazuhisa Hatayama, Mitsukuni Sakashita, Minoru Taya, Waichi Yamamura, Shinji Suzuki, Jiro Moriya
  • Publication number: 20020139148
    Abstract: A method for manufacturing an optical fiber comprises setting a heating condition for heating a glass rod, which is a parent material of the optical fiber, and an elongating speed of the glass rod based on a prescribed numerical value which changes with a progress of elongation of the glass rod; heating and elongating the glass rod to generate a preform based on the heating condition and the elongating speed which are set by the setting; and drawing the preform to a filament-like form by further heating the preform to generate the optical fiber.
    Type: Application
    Filed: June 3, 2002
    Publication date: October 3, 2002
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshiaki Shimizu, Takaaki Nagano, Tadakatsu Shimada, Hideo Hirasawa, Masataka Watanabe, Kazuhisa Hatayama, Mitsukuni Sakashita, Minoru Taya, Waichi Yamamura, Shinji Suzuki, Jiro Moriya
  • Patent number: 6386001
    Abstract: A method for manufacturing an optical fiber comprises setting a heating condition for heating a glass rod, which is a parent material of the optical fiber, and an elongating speed of the glass rod based on a prescribed numerical value which changes with a progress of elongation of the glass rod; heating and elongating the glass rod to generate a preform based on the heating condition and the elongating speed which are set by the setting; and drawing the preform to a filament-like form by further heating the preform to generate the optical fiber.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: May 14, 2002
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshiaki Shimizu, Takaaki Nagano, Tadakatsu Shimada, Hideo Hirasawa, Masataka Watanabe, Kazuhisa Hatayama, Mitsukuni Sakashita, Minoru Taya, Waichi Yamamura, Shinji Suzuki, Jiro Moriya
  • Publication number: 20010006754
    Abstract: A phase shift mask blank comprising a transparent substrate and at least one layer of a phase shifter thereon, wherein the phase shifter is a film composed primarily of a fluorine-doped metal silicide, can be fabricated into a high-performance phase shift mask having adequate transmittance and good stability over time even when used with light sources that emit short-wavelength light. The phase shift mask can be used to fabricate semiconductor integrated circuits to a smaller minimum feature size and a higher level of integration.
    Type: Application
    Filed: January 4, 2001
    Publication date: July 5, 2001
    Inventors: Satoshi Okazaki, Ichiro Kaneko, Jiro Moriya, Masayuki Suzuki, Tamotsu Maruyama
  • Patent number: 5709801
    Abstract: Pullulan is precipitated from an aqueous solution by mixing with a hydrophilic organic solvent incapable of dissolving pullulan. Solid pullulan is then separated from the liquid component of the dispersion by feeding the dispersion into a V-type disk press having a pair of discoid screens arranged so that the distance between them decreases as they are rotated. The pullulan dispersion is pressed by the discoid screens, recovering the liquid component through the screens. The resulting low-liquid-content pullulan continues to rotate together with the screens to an outlet, where it is discharged from the press.
    Type: Grant
    Filed: September 9, 1996
    Date of Patent: January 20, 1998
    Assignees: Shin-Etsu Chemical Co., Ltd., Shin-Etsu Bio, Inc.
    Inventors: Kanji Murofushi, Shigehiro Nagura, Jiro Moriya