Patents by Inventor Jiro Terada

Jiro Terada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10408618
    Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: September 10, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
  • Publication number: 20170131100
    Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.
    Type: Application
    Filed: January 26, 2017
    Publication date: May 11, 2017
    Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
  • Patent number: 9605963
    Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: March 28, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
  • Publication number: 20150122021
    Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 7, 2015
    Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
  • Patent number: 8966976
    Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: March 3, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
  • Patent number: 8844356
    Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: September 30, 2014
    Assignee: Panasonic Corporation
    Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
  • Publication number: 20140026657
    Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.
    Type: Application
    Filed: September 20, 2013
    Publication date: January 30, 2014
    Applicant: Panasonic Corporation
    Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
  • Publication number: 20130228012
    Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.
    Type: Application
    Filed: April 12, 2013
    Publication date: September 5, 2013
    Applicant: Panasonic Corporation
    Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
  • Patent number: 8434362
    Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: May 7, 2013
    Assignee: Panasonic Corporation
    Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
  • Publication number: 20110283796
    Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.
    Type: Application
    Filed: August 1, 2011
    Publication date: November 24, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
  • Patent number: 7587941
    Abstract: A vibration piezoelectric acceleration sensor including a pair of beam shaped members linearly and oppositely disposed on a frame, a support body supporting the beam shaped member, and a holding part holding the support body moveably in a linear direction, and another pair of beam shaped members disposed linearly and oppositely crossing the pair of beam shaped members detecting acceleration in two axes, i.e. X and Y directions. The beam shaped members are extended and retracted by the acceleration transmitted to the support body through the holding part, changing a natural oscillation frequency. Accordingly, a high change ratio of resonance frequency can be provided with the detection of the acceleration, and the acceleration in the direction of two axes can be detected without being affected by a change in temperature.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: September 15, 2009
    Assignee: Panasonic Corporation
    Inventors: Jiro Terada, Masaya Nakatani, Takami Ishida
  • Publication number: 20090064783
    Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.
    Type: Application
    Filed: January 22, 2007
    Publication date: March 12, 2009
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
  • Publication number: 20080223132
    Abstract: A vibration piezoelectric acceleration sensor including a pair of diaphragms linearly and oppositely disposed on a frame, a support body supporting the diaphragm, and a holding part holding the support body slidably in a linear direction, and another pair of diaphragms disposed linearly and oppositely crossing the pair of diaphragms detecting acceleration in two axes, i.e. X and Y directions. The diaphragms are extended and retracted by the acceleration transmitted to the support body through the holding part, changing a natural oscillation frequency. Accordingly, a high change ratio of resonance frequency can be provided with the detection of the acceleration, and the acceleration in two axes directions can be detected without being affected by a change in temperature.
    Type: Application
    Filed: February 14, 2005
    Publication date: September 18, 2008
    Inventors: Jiro Terada, Masaya Nakatani, Takami Ishida
  • Patent number: 7168321
    Abstract: The vibration-type piezoelectric acceleration sensor element includes a frame; and a diaphragm, support, and retentive part, provided in the frame. The diaphragm includes a bottom electrode layer, a piezoelectric thin-film layer formed on the bottom electrode layer, and a top electrode layer formed on the piezoelectric thin-film layer. A first end of the diaphragm is connected to the frame. The support retains a second end of the diaphragm. The retentive part retains the support so that the support is reciprocable only in a direction through the first end and the second end of the diaphragm.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: January 30, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Jiro Terada, Takami Ishida, Masaya Nakatani, Masahiro Yasumi
  • Publication number: 20060236763
    Abstract: The vibration-type piezoelectric acceleration sensor element includes a frame; and a diaphragm, support, and retentive part, provided in the frame. The diaphragm includes a bottom electrode layer, a piezoelectric thin-film layer formed on the bottom electrode layer, and a top electrode layer formed on the piezoelectric thin-film layer. A first end of the diaphragm is connected to the frame. The support retains a second end of the diaphragm. The retentive part retains the support so that the support is reciprocable only in a direction through the first end and the second end of the diaphragm.
    Type: Application
    Filed: July 15, 2005
    Publication date: October 26, 2006
    Inventors: Jiro Terada, Takami Ishida, Masaya Nakatani, Masahiro Yasumi
  • Publication number: 20050213785
    Abstract: A piezoelectric loudspeaker includes: a diaphragm; a first piezoelectric material provided in a first area of the diaphragm; and a second piezoelectric material provided in a second area of the diaphragm different from the first area. The second area has a sound reproduction band different from that of the first area. This piezoelectric loudspeaker has a wide reproduction frequency range.
    Type: Application
    Filed: December 9, 2003
    Publication date: September 29, 2005
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Satoshi Koura, Shoji Nakajima, Shinya Mizone, Jiro Terada
  • Patent number: 6598476
    Abstract: Here disclosed is an angular velocity sensor with much accuracy, not allowing other vibration components to mix into the Coriolis force component. The angular velocity sensor contains a first through a fifth beams: the first, the second, and the third beams have a length of substantially the same and disposed in a substantially parallel arrangement on a substantially the same plane—with the first beam placed between the second and the third; the fourth connects each one end of the first through the third, while the fifth connects each other end of them. The first beam is supportively fixed at its mid-portion. The first beam serves as a detector; the second serves as a driver; and the third serves as a monitor.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: July 29, 2003
    Assignee: Matsushita Electric Industrial Co. Ltd.
    Inventors: Jiro Terada, Katsunori Matsubara, Takeshi Yamamoto
  • Patent number: 6539802
    Abstract: The invention provides an angular velocity sensor capable of obtaining vibration which is close to a linear-operation for a large amplitude input, and a high sensitivity at the same time. The sensor comprises a vibrator, which is made of a piezoelectric element having a perovskite crystal structure expressed as ABO3, and 0.1-1.0 wt. % of MnO2 is added to this piezoelectric element.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: April 1, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Jiro Terada, Masami Tamura
  • Patent number: 6532817
    Abstract: An integral bimorph angular rate sensor is formed by directly bonding two tuning fork members in the thickness direction to enhance the detecting sensitivity of the angular velocity sensor. The individual tuning fork members are formed from a single crystalline piezoelectric material such as quartz and are bonded in the crystal axis direction as to establish a piezoelectric phenomenon wherein the piezoelectric materials of the bonded tuning fork members have inverse polarities in their width or thickness directions.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: March 18, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Junichi Yukawa, Jiro Terada, Kuniharu Nakamaru, Minoru Ishihara, Kozo Ono
  • Publication number: 20020157466
    Abstract: Here disclosed is an angular velocity sensor with much accuracy, not allowing other vibration components to mix into the Coriolis force component. The angular velocity sensor contains a first through a fifth beams: the first, the second, and the third beams have a length of substantially the same and disposed in a substantially parallel arrangement on a substantially the same plane—with the first beam placed between the second and the third; the fourth connects each one end of the first through the third, while the fifth connects each other end of them. The first beam is supportively fixed at its mid-portion. The first beam serves as a detector; the second serves as a driver; and the third serves as a monitor.
    Type: Application
    Filed: March 19, 2002
    Publication date: October 31, 2002
    Inventors: Jiro Terada, Katsunori Matsubara, Takeshi Yamamoto