Patents by Inventor Jitender Arora

Jitender Arora has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10856362
    Abstract: A gateway situated between the RAN and the core network may provide 2G/3G/4G/Wi-Fi convergence for nodes in a network on a plurality of radio access technologies. In some embodiments, a convergence gateway is described that allows for legacy radio access network functions to be provided by all-IP core network nodes. A multi-RAT gateway provides 2G/3G Iuh to IuPS interworking, IuCS to VoLTE interworking via a VoLTE proxy, IuPS and 4G data local breakout or S1-U interworking, and 2G A/IP and Gb/IP to VoLTE and S1-U/local breakout interworking. The multi-RAT gateway may thereby support all voice calls via VoLTE, and all data over S1 or local breakout, including VoLTE. The multi-RAT gateway may provide self-organizing network (SON) capabilities for all RATs. A multi-RAT base station may provide 2G and 3G front-end interworking to Iuh.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 1, 2020
    Assignee: Parallel Wireless, Inc.
    Inventors: Kaitki Agarwal, Rajesh Kumar Mishra, Jitender Arora
  • Patent number: 10798631
    Abstract: A system for an enhanced X2 interface in a mobile operator core network is disclosed, comprising: a Long Term Evolution (LTE) core network packet data network gateway (PGW); an evolved NodeB (eNodeB) connected to the LTE PGW; a Wi-Fi access point (AP) connected to the LTE PGW via a wireless local area network (WLAN) gateway; and a coordinating node positioned as a gateway between the LTE PGW and the eNodeB, and positioned as a gateway between the LTE PGW and the Wi-Fi AP, the coordinating node further comprising: a network address translation (NAT) module; and a protocol module for communicating to the eNodeB and the Wi-Fi AP to request inter-radio technology (inter-RAT) handovers of a user equipment (UE) from the eNodeB to the Wi-Fi AP and to forward packets intended for the UE from the eNodeB to the Wi-Fi AP.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: October 6, 2020
    Assignee: Parallel Wireless, Inc.
    Inventors: Kaitki Agarwal, Yang Cao, Jitender Arora, Michael Yasuhiro Saji, Zeev Lubenski
  • Patent number: 10778589
    Abstract: A system is disclosed for providing configurable flow management, comprising: a first base station coupled to a user device and with an established control connection with the user device; and a coordinating node coupled to the first base station and coupled to a core network, thereby providing a gateway for the first base station and the user device to the core network, the core network further comprising a policy and charging rules function (PCRF) node with a database of policy rules, wherein the coordinating node is configured to retrieve policy rules from the PCRF node, to enable enforcement of retrieved policy rules on flows from the user device passing through the coordinating node, and to transmit policy rules to the first base station for enforcement at the first base station.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: September 15, 2020
    Assignee: Parallel Wireless, Inc.
    Inventors: Jitender Arora, Yang Cao, Zeev Lubenski
  • Publication number: 20200195755
    Abstract: A method for Xx/Xn interface communication is disclosed, comprising: at an Xx/Xn gateway for communicating with, and coupled to, a first and a second radio access network (RAN), receiving messages from the first RAN according to a first Xx/Xn protocol and mapping the received messages to a second Xx/Xn protocol for transmission to the second RAN; maintaining state of one of the first RAN or the second RAN at the Xx/Xn gateway; executing executable code received at an interpreter at the Xx/Xn gateway as part of the received messages; altering the maintained state based on the executed executable code; and receiving and decoding an initial Xx/Xn message from the first RAN; identifying specific strings in the initial Xx/Xn message; matching the identified specific strings in a database of stored scripts; and performing a transformation on the initial Xx/Xn message, the transformation being retrieved from the database for stored scripts, the stored scripts being transformations.
    Type: Application
    Filed: February 25, 2020
    Publication date: June 18, 2020
    Inventors: Rajesh Kumar Mishra, Steven Paul Papa, Kaitki Agarwal, Zeev Lubenski, Jitender Arora
  • Publication number: 20200128110
    Abstract: A method for X2 interface communication is disclosed, comprising: at an X2 gateway for communicating with, and coupled to, a first and a second radio access network (RAN), receiving messages from the first RAN according to a first X2 protocol and mapping the received messages to a second X2 protocol for transmission to the second RAN; maintaining state of one of the first RAN or the second RAN at the X2 gateway; executing executable code received at an interpreter at the X2 gateway as part of the received messages; altering the maintained state based on the executed executable code; and receiving and decoding an initial X2 message from the first RAN; identifying specific strings in the initial X2 message; matching the identified specific strings in a database of stored scripts; and performing a transformation on the initial X2 message, the transformation being retrieved from the database for stored scripts, the stored scripts being transformations.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Inventors: Rajesh Kumar Mishra, Steven Paul Papa, Kaitki Agarwal, Zeev Lubenski, Jitender Arora
  • Publication number: 20200120568
    Abstract: A method is disclosed for avoiding unnecessary keepalive data transfers, comprising: receiving, at an upstream TCP connection endpoint in a radio access network (RAN) from an operator core network, an Internet Protocol (IP) packet; performing, at the upstream TCP connection endpoint, shallow packet inspection on the IP packet; and forwarding the IP packet to the downstream TCP connection endpoint in the RAN if the IP packet is not a keepalive packet, based on the performed shallow packet inspection. The upstream TCP connection endpoint in the RAN may be one of a nodeB, an eNodeB, a base transceiver station (BTS), a coordinating server, and a mobile edge computing (MEC) gateway. The downstream TCP connection endpoint in the RAN may be one of the nodeB, the eNodeB, or the base transceiver station (BTS).
    Type: Application
    Filed: December 17, 2019
    Publication date: April 16, 2020
    Inventors: Zeev Lubenski, Jitender Arora
  • Publication number: 20200092795
    Abstract: A method may be disclosed in accordance with some embodiments, comprising: receiving, at a virtualizing gateway, a first service request from a first user equipment (UE) via a first eNodeB; creating, at the virtualizing gateway, an association from each of a plurality of UE identifiers to a desired core network; applying, at the virtualizing gateway, a first filter using a first UE identifier of the first UE, based on the association; forwarding, at the virtualizing gateway, based on the applied first filter, the first service request from the first UE to the first core network; receiving, at the virtualizing gateway, via a second base station, a second service request from a second user equipment (UE); applying, at the virtualizing gateway, a second filter using a second UE identifier of the second UE, based on the association; and forwarding, at the virtualizing gateway, based on the applied second filter, the second service request from the second UE to the second core network.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Inventors: Kartik Shashikant Raval, Rajesh Kumar Mishra, Kaitki Agarwal, Sridhar Donepudi, Pratik Mehta, Yang Cao, Steven Paul Papa, Jitender Arora
  • Publication number: 20200029382
    Abstract: Systems, methods and computer software are disclosed for providing Multipath Transmission Control Protocol (MPTCP) with mesh access. A multi Radio Access Technology (RAT) base station gateway having a MPTCP proxy, proxies an initial MPTCP connection from a User Equipment (UE). The multi-RAT base station gateway determines if the UE is capable of MPTCP to provide MPTCP. When the UE is capable of MPTCP, then the multi-Rat base station provides a Wi-Fi connection and an LTE connection. When the UE is not capable of MPTCP, then the multi-RAT base station provides an LTE connection.
    Type: Application
    Filed: July 23, 2019
    Publication date: January 23, 2020
    Inventors: David Cullerot, Yang Cao, Jitender Arora
  • Patent number: 10512015
    Abstract: A method is disclosed for avoiding unnecessary keepalive data transfers, comprising: receiving, at an upstream TCP connection endpoint in a radio access network (RAN) from an operator core network, an Internet Protocol (IP) packet; performing, at the upstream TCP connection endpoint, shallow packet inspection on the IP packet; and forwarding the IP packet to the downstream TCP connection endpoint in the RAN if the IP packet is not a keepalive packet, based on the performed shallow packet inspection. The upstream TCP connection endpoint in the RAN may be one of a nodeB, an eNodeB, a base transceiver station (BTS), a coordinating server, and a mobile edge computing (MEC) gateway. The downstream TCP connection endpoint in the RAN may be one of the nodeB, the eNodeB, or the base transceiver station (BTS).
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: December 17, 2019
    Assignee: Parallel Wireless, Inc.
    Inventors: Zeev Lubenski, Jitender Arora
  • Patent number: 10511697
    Abstract: A method for X2 interface communication is disclosed, comprising: at an X2 gateway for communicating with, and coupled to, a first and a second radio access network (RAN), receiving messages from the first RAN according to a first X2 protocol and mapping the received messages to a second X2 protocol for transmission to the second RAN; maintaining state of one of the first RAN or the second RAN at the X2 gateway; executing executable code received at an interpreter at the X2 gateway as part of the received messages; altering the maintained state based on the executed executable code; and receiving and decoding an initial X2 message from the first RAN; identifying specific strings in the initial X2 message; matching the identified specific strings in a database of stored scripts; and performing a transformation on the initial X2 message, the transformation being retrieved from the database for stored scripts, the stored scripts being transformations.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: December 17, 2019
    Assignee: Parallel Wireless, Inc.
    Inventors: Rajesh Kumar Mishra, Steven Paul Papa, Kaitki Agarwal, Zeev Lubenski, Jitender Arora
  • Publication number: 20190373527
    Abstract: A method for localizing a voice call is disclosed, comprising: receiving an originating leg setup message for an originating leg bearer from the first base station for a first user equipment (UE); creating a first call correlation identifier and storing the first call correlation identifier in association with the first UE; extracting a second call correlation identifier from a terminating leg setup message for a terminating leg bearer received from the core network; determining a real time protocol (RTP) localization status for the originating leg bearer and the terminating leg bearer based on matching the second call correlation identifier of the terminating leg against the stored first call correlation identifier of the originating leg; and sending transport layer assignment messages to the first base station to redirect RTP packets from the first UE to the second UE via the terminating leg bearer without the RTP packets transiting the core network.
    Type: Application
    Filed: June 18, 2019
    Publication date: December 5, 2019
    Inventors: Kaitki Agarwal, Jitender Arora, Rajesh Kumar Mishra, Babu Rajagopal, Praveen Kumar, Yang Cao
  • Publication number: 20190268809
    Abstract: The use of wireless backhaul poses special challenges for in-vehicle base stations. Users that are connected to an in-vehicle base station expect continuous service, even as the in-vehicle base station passes in and out of different wireless backhaul coverage zones, such as when a train passes from a train station with good coverage to a tunnel with poor coverage. The base station thus needs seamless backhaul handover. A system that enables an in-vehicle base station to receive continuous service across different backhaul coverage zones is needed. To solve this problem, a system enabling handover is described. The system involves double-tunneling mobile device data packets in an ESP-UDP IPsec tunnel encapsulated in a GTP-U tunnel. Traffic is transmitted from a mobile device to a specially configured base station that encapsulates mobile device data packets and sends them to the network via wireless backhaul using an LTE UE modem connection.
    Type: Application
    Filed: March 11, 2019
    Publication date: August 29, 2019
    Inventors: Yang Cao, Jitender Arora
  • Publication number: 20190260632
    Abstract: A method is disclosed for out-of-band data communication with a base station in a wireless network, the method comprising: determining, at a base station in a cellular access network, the base station configured to use a coordination server and to a first core network for providing network access to user equipments (UEs), an occurrence of an event regarding a communication problem related to the base station; sending an out-of-band message, via an embedded UE module coupled to the base station attached to a second core network, to the coordination server, based on the occurrence of the event at the base station; updating, at the coordination server, a stored status for the base station, thereby enabling a status of the base station to be updated at the coordination server via an out-of-band message.
    Type: Application
    Filed: February 19, 2019
    Publication date: August 22, 2019
    Inventors: Rajesh Kumar Mishra, Randy Rutherford, Sumit Garg, Jitender Arora, Babak Jafarian, Christopher Simmonds
  • Publication number: 20190215910
    Abstract: A gateway situated between the RAN and the core network may provide 2G/3G/4G/Wi-Fi convergence for nodes in a network on a plurality of radio access technologies. In some embodiments, a convergence gateway is described that allows for legacy radio access network functions to be provided by all-IP core network nodes. A multi-RAT gateway provides 2G/3G Iuh to IuPS interworking, IuCS to VoLTE interworking via a VoLTE proxy, IuPS and 4G data local breakout or S1-U interworking, and 2G A/IP and Gb/IP to VoLTE and S1-U/local breakout interworking. The multi-RAT gateway may thereby support all voice calls via VoLTE, and all data over S1 or local breakout, including VoLTE. The multi-RAT gateway may provide self-organizing network (SON) capabilities for all RATs. A multi-RAT base station may provide 2G and 3G front-end interworking to Iuh.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 11, 2019
    Inventors: Kaitki Agarwal, Rajesh Kumar Mishra, Jitender Arora
  • Patent number: 10327185
    Abstract: A method for localizing a voice call is disclosed, comprising: receiving an originating leg setup message for an originating leg bearer from the first base station for a first user equipment (UE); creating a first call correlation identifier and storing the first call correlation identifier in association with the first UE; extracting a second call correlation identifier from a terminating leg setup message for a terminating leg bearer received from the core network; determining a real time protocol (RTP) localization status for the originating leg bearer and the terminating leg bearer based on matching the second call correlation identifier of the terminating leg against the stored first call correlation identifier of the originating leg; and sending transport layer assignment messages to the first base station to redirect RTP packets from the first UE to the second UE via the terminating leg bearer without the RTP packets transiting the core network.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: June 18, 2019
    Assignee: Parallel Wireless, Inc.
    Inventors: Kaitki Agarwal, Jitender Arora, Rajesh Kumar Mishra, Babu Rajagopal, Praveen Kumar, Yang Cao
  • Publication number: 20190166518
    Abstract: A method for congestion mitigation via admission control in a shared-backhaul telecommunications network is disclosed, comprising: assessing a congestion state in a multi-node radio access network having a shared backhaul connection, the congestion state based on congestion of the shared backhaul connection; retrieving an admission control policy based on the congestion state of the shared backhaul connection; performing a policy action of the admission control policy at a first base station acting as a gateway for the multi-node radio access network with respect to the shared backhaul connection; and sending the admission control policy to other nodes in the multi-node radio access network, thereby causing the other nodes to perform the policy action, wherein the policy action is denying a request from a user equipment to attach to the radio access network.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 30, 2019
    Inventors: Jitender Arora, Yang Cao, Rajesh Kumar Mishra
  • Publication number: 20190149545
    Abstract: A method for authenticating radio access network devices is disclosed, comprising: authenticating, at a coordination server, a base station in a radio access network using a first authentication factor; selecting, following successful authentication of the base station using the first authentication factor, a challenge question based on historical information of the base station stored within a database; sending, from the coordination server to the base station, a request containing the challenge question to further authenticate the base station based on the historical information of the base station; receiving, from the base station at the coordination server, a response to the challenge question; verifying, at the coordination server, the correctness of the response using a key derived from the historical information; and granting the base station access to a core network of a mobile operator, thereby addressing security issues unsolved by one-factor authentication.
    Type: Application
    Filed: November 15, 2018
    Publication date: May 16, 2019
    Inventors: Jitender Arora, Yang Cao, Steven Paul Papa
  • Publication number: 20190150048
    Abstract: A method is disclosed for avoiding unnecessary keepalive data transfers, comprising: receiving, at an upstream TCP connection endpoint in a radio access network (RAN) from an operator core network, an Internet Protocol (IP) packet; performing, at the upstream TCP connection endpoint, shallow packet inspection on the IP packet; and forwarding the IP packet to the downstream TCP connection endpoint in the RAN if the IP packet is not a keepalive packet, based on the performed shallow packet inspection. The upstream TCP connection endpoint in the RAN may be one of a nodeB, an eNodeB, a base transceiver station (BTS), a coordinating server, and a mobile edge computing (MEC) gateway. The downstream TCP connection endpoint in the RAN may be one of the nodeB, the eNodeB, or the base transceiver station (BTS).
    Type: Application
    Filed: January 8, 2019
    Publication date: May 16, 2019
    Inventors: Zeev Lubenski, Jitender Arora
  • Patent number: 10237914
    Abstract: A gateway situated between the RAN and the core network may provide 2G/3G/4G/Wi-Fi convergence for nodes in a network on a plurality of radio access technologies. In some embodiments, a convergence gateway is described that allows for legacy radio access network functions to be provided by all-IP core network nodes. A multi-RAT gateway provides 2G/3G Iuh to IuPS interworking, IuCS to VoLTE interworking via a VoLTE proxy, IuPS and 4G data local breakout or S1-U interworking, and 2G A/IP and Gb/IP to VoLTE and S1-U/local breakout interworking. The multi-RAT gateway may thereby support all voice calls via VoLTE, and all data over S1 or local breakout, including VoLTE. The multi-RAT gateway may provide self-organizing network (SON) capabilities for all RATs. A multi-RAT base station may provide 2G and 3G front-end interworking to Iuh.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: March 19, 2019
    Assignee: Parallel Wireless, Inc.
    Inventors: Kaitki Agarwal, Rajesh Kumar Mishra, Jitender Arora
  • Patent number: 10231151
    Abstract: The use of wireless backhaul poses special challenges for in-vehicle base stations. Users that are connected to an in-vehicle base station expect continuous service, even as the in-vehicle base station passes in and out of different wireless backhaul coverage zones, such as when a train passes from a train station with good coverage to a tunnel with poor coverage. The base station thus needs seamless backhaul handover. A system that enables an in-vehicle base station to receive continuous service across different backhaul coverage zones is needed. To solve this problem, a system enabling handover is described. The system involves double-tunneling mobile device data packets in an ESP-UDP IPsec tunnel encapsulated in a GTP-U tunnel. Traffic is transmitted from a mobile device to a specially configured base station that encapsulates mobile device data packets and sends them to the network via wireless backhaul using an LTE UE modem connection.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: March 12, 2019
    Assignee: Parallel Wireless, Inc.
    Inventors: Yang Cao, Jitender Arora