Patents by Inventor Jiun-Jia Huang

Jiun-Jia Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200006344
    Abstract: A fin field effect transistor (FinFET) having a tunable tensile strain and an embodiment method of tuning tensile strain in an integrated circuit are provided. The method includes forming a source/drain region on opposing sides of a gate region in a fin, forming spacers over the fin, the spacers adjacent to the source/drain regions, depositing a dielectric between the spacers; and performing an annealing process to contract the dielectric, the dielectric contraction deforming the spacers, the spacer deformation enlarging the gate region in the fin.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 2, 2020
    Inventors: Kuo-Cheng Chiang, Zhi-Chang Lin, Guan-Lin Chen, Ting-Hung Hsu, Jiun-Jia Huang
  • Patent number: 10453842
    Abstract: A fin field effect transistor (FinFET) having a tunable tensile strain and an embodiment method of tuning tensile strain in an integrated circuit are provided. The method includes forming a source/drain region on opposing sides of a gate region in a fin, forming spacers over the fin, the spacers adjacent to the source/drain regions, depositing a dielectric between the spacers; and performing an annealing process to contract the dielectric, the dielectric contraction deforming the spacers, the spacer deformation enlarging the gate region in the fin.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: October 22, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Guan-Lin Chen, Ting-Hung Hsu, Jiun-Jia Huang
  • Patent number: 10340191
    Abstract: A method of forming a fin structure of a semiconductor device, such as a fin field effect transistor (FinFET) is provided. In an embodiment, trenches are formed in a substrate, and a liner is formed along sidewalls of the trenches, wherein a region between adjacent trenches define a fin. A dielectric material is formed in the trenches. Portions of the semiconductor material of the fin are replaced with a second semiconductor material and a third semiconductor material, the second semiconductor material having a different lattice constant than the substrate and the third semiconductor material having a different lattice constant than the second semiconductor material. Portions of the second semiconductor material are oxidized.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: July 2, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20190006371
    Abstract: A semiconductor device includes a substrate having a semiconductor fin, in which the semiconductor fin has a first sidewall and a second sidewall opposite to the first sidewall; an epitaxy structure in contact with the first sidewall of the semiconductor fin; and a spacer in contact with the second sidewall of the semiconductor fin and the epitaxy structure.
    Type: Application
    Filed: February 27, 2018
    Publication date: January 3, 2019
    Inventors: Tetsu OHTOU, Ching-Wei TSAI, Kuan-Lun CHENG, Yasutoshi OKUNO, Jiun-Jia HUANG
  • Publication number: 20180197783
    Abstract: A method of forming a fin structure of a semiconductor device, such as a fin field effect transistor (FinFET) is provided. In an embodiment, trenches are formed in a substrate, and a liner is formed along sidewalls of the trenches, wherein a region between adjacent trenches define a fin. A dielectric material is formed in the trenches. Portions of the semiconductor material of the fin are replaced with a second semiconductor material and a third semiconductor material, the second semiconductor material having a different lattice constant than the substrate and the third semiconductor material having a different lattice constant than the second semiconductor material. Portions of the second semiconductor material are oxidized.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 12, 2018
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang, Chao-Hsiung Wang, Chi-Wen Liu
  • Patent number: 9984938
    Abstract: A method includes providing a substrate having a first gate region for a first device and a second gate region for a second device, the first and second gate regions having different channel lengths. The method further includes forming first and second fins in at least the first and second gate regions respectively, and forming first and second stacks of semiconductor layers over the first and second fins respectively. The method further includes performing an oxidation process to the first and second stacks, thereby forming first and second semiconductor wires in the first and second gate regions respectively. Each of the first and second semiconductor wires is wrapped by a semiconductor oxide layer. The first and second semiconductor wires have different cross-sectional geometries in a respective plane that is perpendicular to their respective longitudinal direction.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: May 29, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang
  • Patent number: 9947587
    Abstract: A method of forming a fin structure of a semiconductor device, such as a fin field effect transistor (FinFET) is provided. In an embodiment, trenches are formed in a substrate, and a liner is formed along sidewalls of the trenches, wherein a region between adjacent trenches define a fin. A dielectric material is formed in the trenches. Portions of the semiconductor material of the fin are replaced with a second semiconductor material and a third semiconductor material, the second semiconductor material having a different lattice constant than the substrate and the third semiconductor material having a different lattice constant than the second semiconductor material. Portions of the second semiconductor material are oxidized.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: April 17, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20180097097
    Abstract: An integrated circuit structure includes a semiconductor substrate, and isolation regions extending into the semiconductor substrate, wherein the isolation regions have opposite sidewalls facing each other. A fin structure includes a silicon fin higher than top surfaces of the isolation regions, a germanium-containing semiconductor region overlapped by the silicon fin, silicon oxide regions on opposite sides of the germanium-containing semiconductor region, and a germanium-containing semiconductor layer between and in contact with the silicon fin and one of the silicon oxide regions.
    Type: Application
    Filed: December 5, 2017
    Publication date: April 5, 2018
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang, Chao-Hsiung Wang, Chi-Wen Liu
  • Patent number: 9859429
    Abstract: An integrated circuit structure includes a semiconductor substrate, and isolation regions extending into the semiconductor substrate, wherein the isolation regions have opposite sidewalls facing each other. A fin structure includes a silicon fin higher than top surfaces of the isolation regions, a germanium-containing semiconductor region overlapped by the silicon fin, silicon oxide regions on opposite sides of the germanium-containing semiconductor region, and a germanium-containing semiconductor layer between and in contact with the silicon fin and one of the silicon oxide regions.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: January 2, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20170213830
    Abstract: A fin field effect transistor (FinFET) having a tunable tensile strain and an embodiment method of tuning tensile strain in an integrated circuit are provided. The method includes forming a source/drain region on opposing sides of a gate region in a fin, forming spacers over the fin, the spacers adjacent to the source/drain regions, depositing a dielectric between the spacers; and performing an annealing process to contract the dielectric, the dielectric contraction deforming the spacers, the spacer deformation enlarging the gate region in the fin.
    Type: Application
    Filed: April 7, 2017
    Publication date: July 27, 2017
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Guan-Lin Chen, Ting-Hung Hsu, Jiun-Jia Huang
  • Patent number: 9627385
    Abstract: A fin field effect transistor (FinFET) having a tunable tensile strain and an embodiment method of tuning tensile strain in an integrated circuit are provided. The method includes forming a source/drain region on opposing sides of a gate region in a fin, forming spacers over the fin, the spacers adjacent to the source/drain regions, depositing a dielectric between the spacers; and performing an annealing process to contract the dielectric, the dielectric contraction deforming the spacers, the spacer deformation enlarging the gate region in the fin.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: April 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Guan-Lin Chen, Ting-Hung Hsu, Jiun-Jia Huang
  • Publication number: 20170005004
    Abstract: A method of forming a fin structure of a semiconductor device, such as a fin field effect transistor (FinFET) is provided. In an embodiment, trenches are formed in a substrate, and a liner is formed along sidewalls of the trenches, wherein a region between adjacent trenches define a fin. A dielectric material is formed in the trenches. Portions of the semiconductor material of the fin are replaced with a second semiconductor material and a third semiconductor material, the second semiconductor material having a different lattice constant than the substrate and the third semiconductor material having a different lattice constant than the second semiconductor material. Portions of the second semiconductor material are oxidized.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang, Chao-Hsiung Wang, Chi-Wen Liu
  • Patent number: 9455334
    Abstract: A method of forming a fin structure of a semiconductor device, such as a fin field effect transistor FinFET is provided. In an embodiment, trenches are formed in a substrate, and a liner is formed along sidewalls of the trenches, wherein a region between adjacent trenches define a fin. A dielectric material is formed in the trenches. Portions of the semiconductor material of the fin are replaced with a second semiconductor material and a third semiconductor material, the second semiconductor material having a different lattice constant than the substrate and the third semiconductor material having a different lattice constant than the second semiconductor material. Portions of the second semiconductor material are oxidized.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: September 27, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20160268172
    Abstract: A method includes providing a substrate having a first gate region for a first device and a second gate region for a second device, the first and second gate regions having different channel lengths. The method further includes forming first and second fins in at least the first and second gate regions respectively, and forming first and second stacks of semiconductor layers over the first and second fins respectively. The method further includes performing an oxidation process to the first and second stacks, thereby forming first and second semiconductor wires in the first and second gate regions respectively. Each of the first and second semiconductor wires is wrapped by a semiconductor oxide layer. The first and second semiconductor wires have different cross-sectional geometries in a respective plane that is perpendicular to their respective longitudinal direction.
    Type: Application
    Filed: May 26, 2016
    Publication date: September 15, 2016
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang
  • Patent number: 9355915
    Abstract: A method includes providing a substrate having a metal-oxide-semiconductor (MOS) region. The MOS region includes first gate, source, and drain regions for a first device, and second gate, source, and drain regions for a second device. The first gate region has a first length. The second gate region has a second length different from the first length. The method further includes forming first and second fins in the first and second gate regions, forming first and second semiconductor layer stacks over the first and second fins, and performing a thermal oxidation process to the first and second semiconductor layer stacks, thereby forming first and second nanowire sets in the first and second gate regions respectively. The first and second nanowire sets are wrapped by respective semiconductor oxide layers. The first nanowire set has a first diameter. The second nanowire set has a second diameter different from the first diameter.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: May 31, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang
  • Publication number: 20160056157
    Abstract: A fin field effect transistor (FinFET) having a tunable tensile strain and an embodiment method of tuning tensile strain in an integrated circuit are provided. The method includes forming a source/drain region on opposing sides of a gate region in a fin, forming spacers over the fin, the spacers adjacent to the source/drain regions, depositing a dielectric between the spacers; and performing an annealing process to contract the dielectric, the dielectric contraction deforming the spacers, the spacer deformation enlarging the gate region in the fin.
    Type: Application
    Filed: August 28, 2015
    Publication date: February 25, 2016
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Guan-Lin Chen, Ting-Hung Hsu, Jiun-Jia Huang
  • Patent number: 9245882
    Abstract: A method includes forming a semiconductor fin, forming a dummy gate on a top surface and sidewalls of the semiconductor fin, and removing the dummy gate to form a recess. The semiconductor fin is exposed to the recess. After the dummy gate is removed, an oxidation is performed on the semiconductor fin to form a condensed germanium-containing fin in the recess, and a silicon oxide layer on a top surface and sidewalls of the condensed germanium-containing fin. The method further includes forming a gate dielectric over the condensed germanium-containing fin, and forming a gate electrode over the gate dielectric.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: January 26, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Zhiqiang Wu, Jiun-Jia Huang, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20150372120
    Abstract: A fin structure of a semiconductor device, such as a fin field effect transistor (FinFET), and a method of manufacture, is provided. In an embodiment, trenches are formed in a substrate, and a liner is formed along sidewalls of the trenches, wherein a region between adjacent trenches define a fin. A dielectric material is formed in the trenches. Portions of the semiconductor material of the fin are replaced with a second semiconductor material and a third semiconductor material, the second semiconductor material having a different lattice constant than the substrate and the third semiconductor material having a different lattice constant than the second semiconductor material. Portions of the second semiconductor material are oxidized.
    Type: Application
    Filed: August 28, 2015
    Publication date: December 24, 2015
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20150332971
    Abstract: A method includes providing a substrate having a metal-oxide-semiconductor (MOS) region. The MOS region includes first gate, source, and drain regions for a first device, and second gate, source, and drain regions for a second device. The first gate region has a first length. The second gate region has a second length different from the first length. The method further includes forming first and second fins in the first and second gate regions, forming first and second semiconductor layer stacks over the first and second fins, and performing a thermal oxidation process to the first and second semiconductor layer stacks, thereby forming first and second nanowire sets in the first and second gate regions respectively. The first and second nanowire sets are wrapped by respective semiconductor oxide layers. The first nanowire set has a first diameter. The second nanowire set has a second diameter different from the first diameter.
    Type: Application
    Filed: July 22, 2015
    Publication date: November 19, 2015
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang
  • Patent number: 9159833
    Abstract: A fin structure of a semiconductor device, such as a fin field effect transistor (FinFET), and a method of manufacture, is provided. In an embodiment, trenches are formed in a substrate, and a liner is formed along sidewalls of the trenches, wherein a region between adjacent trenches define a fin. A dielectric material is formed in the trenches. Portions of the semiconductor material of the fin are replaced with a second semiconductor material and a third semiconductor material, the second semiconductor material having a different lattice constant than the substrate and the third semiconductor material having a different lattice constant than the second semiconductor material. Portions of the second semiconductor material are oxidized.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: October 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang, Chao-Hsiung Wang, Chi-Wen Liu