Patents by Inventor Jiunn-Hsiung Liao

Jiunn-Hsiung Liao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8828815
    Abstract: First, a semiconductor substrate having a first active region and a second active region is provided. The first active region includes a first transistor and the second active region includes a second transistor. A first etching stop layer, a stress layer, and a second etching stop layer are disposed on the first transistor, the second transistor and the isolation structure. A first etching process is performed by using a patterned photoresist disposed on the first active region as a mask to remove the second etching stop layer and a portion of the stress layer from the second active region. The patterned photoresist is removed, and a second etching process is performed by using the second etching stop layer of the first active region as a mask to remove the remaining stress layer and a portion of the first etching stop layer from the second active region.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: September 9, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Pei-Yu Chou, Shih-Fang Tzou, Jiunn-Hsiung Liao
  • Patent number: 8791013
    Abstract: A pattern forming method is disclosed. The method includes the steps of: forming a dielectric layer on a substrate; forming a first patterned mask on the dielectric layer, wherein the first patterned mask comprises an opening; forming a material layer on the dielectric layer and covering the first patterned mask; forming a second patterned mask on the material layer, wherein the second patterned mask comprises a first aperture; forming a second aperture in the second patterned mask after forming the first aperture, wherein the second aperture and the first aperture comprise a gap therebetween and overlap the opening; and utilizing the second patterned mask as an etching mask for partially removing the material layer and the dielectric layer through the first aperture and the second aperture.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 29, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Shin-Chi Chen, Yu-Tsung Lai, Jiunn-Hsiung Liao, Guang-Yaw Hwang
  • Patent number: 8735295
    Abstract: A method for fabricating a dual damascene structure includes the following steps. At first, a dielectric layer, a dielectric mask layer and a metal mask layer are sequentially formed on a substrate. A plurality of trench openings is formed in the metal mask layer, and a part of the metal mask layer is exposed in the bottom of each of the trench openings. Subsequently, a plurality of via openings are formed in the dielectric mask layer, and a part of the dielectric mask layer is exposed in a bottom of each of the via openings. Furthermore, the trench openings and the via openings are transferred to the dielectric layer to form a plurality of dual damascene openings.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: May 27, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chang-Hsiao Lee, Hsin-Yu Chen, Yu-Tsung Lai, Jiunn-Hsiung Liao, Shih-Chun Tsai
  • Publication number: 20140127892
    Abstract: A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a first transistor and a second transistor formed thereon, the first transistor having a first gate trench formed therein, forming a first work function metal layer in the first gate trench, forming a sacrificial masking layer in the first gate trench, removing a portion of the sacrificial masking layer to expose a portion of the first work function metal layer, removing the exposed first function metal layer to form a U-shaped work function metal layer in the first gate trench, and removing the sacrificial masking layer. The first transistor includes a first conductivity type and the second transistor includes a second conductivity type. The first conductivity type and the second conductivity type are complementary.
    Type: Application
    Filed: December 19, 2013
    Publication date: May 8, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Patent number: 8704294
    Abstract: A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a first transistor and a second transistor formed thereon, the first transistor having a first gate trench formed therein, forming a first work function metal layer in the first gate trench, forming a sacrificial masking layer in the first gate trench, removing a portion of the sacrificial masking layer to expose a portion of the first work function metal layer, removing the exposed first function metal layer to form a U-shaped work function metal layer in the first gate trench, and removing the sacrificial masking layer. The first transistor includes a first conductivity type and the second transistor includes a second conductivity type. The first conductivity type and the second conductivity type are complementary.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: April 22, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Publication number: 20140103443
    Abstract: A semiconductor device having a metal gate includes a substrate having a first gate trench and a second gate trench formed thereon, a gate dielectric layer respectively formed in the first gate trench and the second gate trench, a first work function metal layer formed on the gate dielectric layer in the first gate trench and the second gate trench, a second work function metal layer respectively formed in the first gate trench and the second gate trench, and a filling metal layer formed on the second work function metal layer. An opening width of the second gate trench is larger than an opening width of the first gate trench. An upper area of the second work function metal layer in the first gate trench is wider than a lower area of the second work function metal layer in the first gate trench.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Publication number: 20140099760
    Abstract: A method for fabricating a semiconductor device, wherein the method comprises steps as follows: A dummy gate with a poly-silicon gate electrode and a passive device having a poly-silicon element layer are firstly provided. A hard mask layer is then formed on the dummy gate and the passive device. Next, a first etching process is performed to remove a portion of the hard mask layer to expose a portion of the poly-silicon element layer. Subsequently, an inner layer dielectric (ILD) is formed on the dummy gate and the poly-silicon element layer, and the ILD is flattened by using the hard mask layer as a polishing stop layer. Thereafter, a second etching process is performed to remove the poly-silicon gate electrode, and a metal gate electrode is formed on the location where the poly-silicon gate electrode was initially disposed.
    Type: Application
    Filed: December 11, 2013
    Publication date: April 10, 2014
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chieh-Te CHEN, Shih-Fang TZOU, Jiunn-Hsiung LIAO, Yi-Po LIN
  • Patent number: 8691652
    Abstract: A semiconductor process includes the following steps. A fin-shaped structure is formed on a substrate. A gate structure and a cap layer are formed, wherein the gate structure is disposed across parts of the fin-shaped structure and parts of the substrate, the cap layer is on the gate structure, and the cap layer includes a first cap layer on the gate structure and a second cap layer on the first cap layer. A spacer material is formed to entirely cover the second cap layer, the fin-shaped structure and the substrate. The spacer material is etched, so that the sidewalls of the second cap layer are exposed and a spacer is formed beside the gate structure. The second cap layer is removed.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: April 8, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Lung-En Kuo, Jiunn-Hsiung Liao, Hsuan-Hsu Chen
  • Patent number: 8691659
    Abstract: A method for forming a dielectric layer free of voids is disclosed. First, a substrate, a first stressed layer including a recess, a second stressed layer disposed on the first stressed layer and covering the recess and a patterned photoresist embedded in the recess are provided. Second, a first etching step is performed to totally remove the photoresist so that the remaining second stressed layer forms at least one protrusion adjacent to the recess. Then, a trimming photoresist is formed without exposure to fill the recess and to cover the protrusion. Later, a trimming etching step is performed to eliminate the protrusion and to collaterally remove the trimming photoresist.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: April 8, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Ching-Pin Hsu, Yi-Po Lin, Jiunn-Hsiung Liao, Chieh-Te Chen, Feng-Yi Chang, Shang-Yuan Tsai, Li-Chiang Chen
  • Patent number: 8673544
    Abstract: A method for forming openings is provided. First, a substrate with a silicon-containing photo resist layer thereon is provided. Second, a first photo resist pattern is formed on the silicon-containing photo resist layer. Later, a first etching procedure is carried out on the silicon-containing photo resist layer to form a plurality of first openings by using the first photo resist pattern as an etching mask. Next, a second photo resist pattern is formed on the silicon-containing photo resist layer. Then, a second etching procedure is carried out on the silicon-containing photo resist layer to form a plurality of second openings by using the second photo resist pattern as an etching mask.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: March 18, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Pei-Yu Chou, Jiunn-Hsiung Liao
  • Publication number: 20140073104
    Abstract: A manufacturing method of a semiconductor device is disclosed in the present invention. First, at least one gate structure and plurality of source/drain regions on a substrate are formed, a dielectric layer is then formed on the substrate, a first contact hole and a second contact hole are formed in the dielectric layer, respectively on the gate structure and the source/drain region, and a third contact hole is formed in the dielectric layer, wherein the third contact hole overlaps the first contact hole and the second contact hole.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 13, 2014
    Inventors: Chieh-Te Chen, Yi-Po Lin, Jiunn-Hsiung Liao, Feng-Yi Chang, Shang-Yuan Tsai
  • Publication number: 20140038399
    Abstract: A method for fabricating an aperture is disclosed. The method includes the steps of: forming a hard mask containing carbon on a surface of a semiconductor substrate; and using a non-oxygen element containing gas to perform a first etching process for forming a first aperture in the hard mask. Before forming the hard mask, a gate which includes a contact etch stop layer and a dielectric layer is formed on the semiconductor substrate.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 6, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Feng-Yi Chang, Yi-Po Lin, Jiunn-Hsiung Liao, Shang-Yuan Tsai, Chih-Wen Feng, Shui-Yen Lu, Ching-Pin Hsu
  • Publication number: 20140038417
    Abstract: A semiconductor structure includes a substrate, a recess and a material. The recess is located in the substrate, wherein the recess has an upper part and a lower part. The minimum width of the upper part is larger than the maximum width of the lower part. The material is located in the recess.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 6, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ying-Chih Lin, Hsuan-Hsu Chen, Jiunn-Hsiung Liao, Lung-En Kuo
  • Patent number: 8633549
    Abstract: A semiconductor device comprises a metal gate electrode, a passive device and a hard mask layer. The passive device has a poly-silicon element layer. The hard mask layer is disposed on the metal gate electrode and the passive electrode and has a first opening and a second opening substantially coplanar with each other, wherein the metal gate electrode and the poly-silicon element layer are respectively exposed via the first opening and the second opening; and there is a distance between the first opening and the metal gate electrode substantially less than the distance between the second opening and the poly-silicon element layer.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: January 21, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chieh-Te Chen, Shih-Fang Tzou, Jiunn-Hsiung Liao, Yi-Po Lin
  • Publication number: 20130337650
    Abstract: A method for fabricating a dual damascene structure includes the following steps. At first, a dielectric layer, a dielectric mask layer and a metal mask layer are sequentially formed on a substrate. A plurality of trench openings is formed in the metal mask layer, and a part of the metal mask layer is exposed in the bottom of each of the trench openings. Subsequently, a plurality of via openings are formed in the dielectric mask layer, and a part of the dielectric mask layer is exposed in a bottom of each of the via openings. Furthermore, the trench openings and the via openings are transferred to the dielectric layer to form a plurality of dual damascene openings.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 19, 2013
    Inventors: Chang-Hsiao Lee, Hsin-Yu Chen, Yu-Tsung Lai, Jiunn-Hsiung Liao, Shih-Chun Tsai
  • Patent number: 8592321
    Abstract: A method for fabricating an aperture is disclosed. The method includes the steps of: forming a hard mask containing carbon on a surface of a semiconductor substrate; and using a non-oxygen element containing gas to perform a first etching process for forming a first aperture in the hard mask.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: November 26, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Feng-Yi Chang, Yi-Po Lin, Jiunn-Hsiung Liao, Shang-Yuan Tsai, Chih-Wen Feng, Shui-Yen Lu, Ching-Pin Hsu
  • Patent number: 8592304
    Abstract: A method for filling a metal is disclosed. First, a substrate is provided. The substrate includes a metal material layer, a dielectric layer covering the metal material layer and a hard mask layer covering the dielectric layer. The hard mask layer has at least one opening to expose the underlying dielectric layer. Second, a dry etching step is performed to etch the dielectric layer through the opening to remove part of the dielectric layer to expose the metal material layer and to form a recess and leave some residues in the recess. Then a cleaning step is performed to remove the residues and to selectively remove part of the hard mask to substantially enlarge the opening. Later, a metal fills the recess through the enlarged opening.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: November 26, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chang-Hsiao Lee, Yu-Tsung Lai, Jiunn-Hsiung Liao
  • Patent number: 8592322
    Abstract: A method of fabricating openings is disclosed. First, a semiconductor substrate having a salicide region thereon is provided. An etch stop layer and at least a dielectric layer are disposed on the semiconductor substrate from bottom to top. Second, the dielectric layer and the etching stop layer are patterned to form a plurality of openings in the dielectric layer and in the etching stop layer so that the openings expose the salicide region. Then, a dielectric thin film covering the dielectric layer, sidewalls of the openings and the salicide region is formed. Later, the dielectric thin film disposed on the dielectric layer and on the salicide region is removed.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: November 26, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Feng-Yi Chang, Pei-Yu Chou, Jiunn-Hsiung Liao, Chih-Wen Feng, Ying-Chih Lin, Po-Chao Tsao
  • Publication number: 20130292775
    Abstract: A strained silicon substrate structure includes a first transistor and a second transistor disposed on a substrate. The first transistor includes a first gate structure and two first source/drain regions disposed at two sides of the first gate structure. A first source/drain to gate distance is between each first source/drain region and the first gate structure. The second transistor includes a second gate structure and two source/drain doped regions disposed at two side of the second gate structure. A second source/drain to gate distance is between each second source/drain region and the second gate structure. The first source/drain to gate distance is smaller than the second source/drain to gate distance.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 7, 2013
    Inventors: Guang-Yaw Hwang, Ling-Chun Chou, I-Chang Wang, Shin-Chuan Huang, Jiunn-Hsiung Liao, Shin-Chi Chen, Pau-Chung Lin, Chiu-Hsien Yeh, Chin-Cheng Chien, Chieh-Te Chen
  • Publication number: 20130295738
    Abstract: A semiconductor process includes the following steps. A fin-shaped structure is formed on a substrate. A gate structure and a cap layer are formed, wherein the gate structure is disposed across parts of the fin-shaped structure and parts of the substrate, the cap layer is on the gate structure, and the cap layer includes a first cap layer on the gate structure and a second cap layer on the first cap layer. A spacer material is formed to entirely cover the second cap layer, the fin-shaped structure and the substrate. The spacer material is etched, so that the sidewalls of the second cap layer are exposed and a spacer is formed beside the gate structure. The second cap layer is removed.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Inventors: Lung-En Kuo, Jiunn-Hsiung Liao, Hsuan-Hsu Chen