Patents by Inventor Ji-Wook Yoon

Ji-Wook Yoon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145719
    Abstract: A binder solution for an all-solid-state battery, an electrode slurry for an all-solid-state battery including the same and a method of manufacturing an all-solid-state battery using the same, and more particularly to a binder solution for an all-solid-state battery, in which a polymer binder configured such that a non-polar functional group is bonded to the end of a polar functional group is used, whereby the polar functional group is provided by a deprotection mechanism of the polymer binder through a thermal treatment, thus increasing adhesion between electrode materials to thereby improve battery capacity and enabling a wet process to thereby reduce manufacturing costs, an electrode slurry for an all-solid-state battery including the same and a method of manufacturing an all-solid-state battery using the same.
    Type: Application
    Filed: January 10, 2024
    Publication date: May 2, 2024
    Applicants: HYUNDAI MOTOR COMPANY, Kia Corporation, Seoul National University R&DB Foundation
    Inventors: Sang Mo Kim, Sang Heon Lee, Yong Sub Yoon, Jae Min Lim, Ju Yeong Seong, Jin Soo Kim, Jang Wook Choi, Kyu Lin Lee, Ji Eun Lee
  • Patent number: 11932618
    Abstract: Disclosed are novel compounds of Chemical Formula 1, optical isomers of the compounds, and pharmaceutically acceptable salts of the compounds or the optical isomers. The compounds, isomers, and salts exhibit excellent activity as GLP-1 receptor agonists. In particular, they, as GLP-1 receptor agonists, exhibit excellent glucose tolerance, thus having a great potential to be used as therapeutic agents for metabolic diseases. Moreover, they exhibit excellent pharmacological safety for cardiovascular systems.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: March 19, 2024
    Assignee: ILDONG PHARMACEUTICAL CO., LTD.
    Inventors: Hong Chul Yoon, Kyung Mi An, Myong Jae Lee, Jin Hee Lee, Jeong-geun Kim, A-rang Im, Woo Jin Jeon, Jin Ah Jeong, Jaeho Heo, Changhee Hong, Kyeojin Kim, Jung-Eun Park, Te-ik Sohn, Changmok Oh, Da Hae Hong, Sung Wook Kwon, Jung Ho Kim, Jae Eui Shin, Yeongran Yoo, Min Whan Chang, Eun Hye Jang, In-gyu Je, Ji Hye Choi, Gunhee Kim, Yearin Jun
  • Patent number: 10983101
    Abstract: Provided is an oxide semiconductor gas sensor with improved performance that senses selectively methylbenzene gases with high sensitivity. The gas sensor includes a gas sensing layer composed of palladium (Pd)-loaded cobalt oxide (Co3O4) nanostructures. The response of the gas sensor according to the present invention to xylene gas at a concentration as low as 5 ppm is at least 150 times higher than that to ethanol gas. The response of the gas sensor to toluene gas at a concentration as low as 5 ppm is at least 100 times higher than that to ethanol gas. In addition, the oxide semiconductor gas sensor has the ability to selectively detect methylbenzene gases, including xylene and toluene (with at least 30-fold higher response to xylene and at least 15 times higher response to toluene than that to ethanol gas).
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: April 20, 2021
    Assignee: Korea University Research and Business Foundation
    Inventors: Jong-Heun Lee, Yunchan Kang, Ji-Wook Yoon, Su-Jin Hwang
  • Publication number: 20180031532
    Abstract: Provided is an oxide semiconductor gas sensor with improved performance that senses selectively methylbenzene gases with high sensitivity. The gas sensor includes a gas sensing layer composed of palladium (Pd)-loaded cobalt oxide (Co3O4) nanostructures. The response of the gas sensor according to the present invention to xylene gas at a concentration as low as 5 ppm is at least 150 times higher than that to ethanol gas. The response of the gas sensor to toluene gas at a concentration as low as 5 ppm is at least 100 times higher than that to ethanol gas. In addition, the oxide semiconductor gas sensor has the ability to selectively detect methylbenzene gases, including xylene and toluene (with at least 30-fold higher response to xylene and at least 15 times higher response to toluene than that to ethanol gas).
    Type: Application
    Filed: May 12, 2015
    Publication date: February 1, 2018
    Applicant: Korea University Research and Business Foundation
    Inventors: Jong-Heun Lee, Yunchan Kang, Ji-Wook Yoon, Su-Jin Hwang