Patents by Inventor Jiyong Lian

Jiyong Lian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10211625
    Abstract: Arc flash mitigation devices are employed to protect personnel during maintenance of photovoltaic inverters. During normal operation, an alternating current (AC) output of a photovoltaic inverter is coupled to a low voltage winding of a step up transformer through a bus-bar (e.g., an electrically conductive interconnect), which has higher current rating than a fuse. During maintenance, the bus-bar is replaced with the fuse. The fuse may be employed in conjunction with a switch. The switch may be a disconnect switch that places the bus-bar in parallel with the fuse during normal operation, and decouples the bus-bar from the fuse during maintenance. The switch may also be a transfer switch that places either the bus-bar or the fuse in series with the AC output of the photovoltaic inverter and the low voltage winding of the step up transformer.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: February 19, 2019
    Assignee: SunPower Corporation
    Inventors: Seshadri Sivakumar, Jiyong Lian, Venkat Reddy Konala, David Barr, Priyantha Sirisooriya, Jacqueline Ahmad, Jason Spokes
  • Patent number: 9912161
    Abstract: A photovoltaic power plant includes solar cells and inverters that convert direct current generated by the solar cells to alternating current. The reactive powers generated by the inverters are based on a reactive power generated by a virtual inverter. The virtual inverter has an equivalent impedance representing the impedances of the inverters in the photovoltaic power plant. The reactive power setpoints of the inverters may be received from a local interpreter. The local interpreter may generate the reactive power setpoints from a global reactive power setpoint generated by a grid controller.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 6, 2018
    Assignee: SunPower Corporation
    Inventors: Seshadri Sivakumar, Jiyong Lian
  • Publication number: 20160344191
    Abstract: A photovoltaic power plant includes solar cells and inverters that convert direct current generated by the solar cells to alternating current. The reactive powers generated by the inverters are based on a reactive power generated by a virtual inverter. The virtual inverter has an equivalent impedance representing the impedances of the inverters in the photovoltaic power plant. The reactive power setpoints of the inverters may be received from a local interpreter. The local interpreter may generate the reactive power setpoints from a global reactive power setpoint generated by a grid controller.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Applicant: SunPower Corporation
    Inventors: Seshadri SIVAKUMAR, Jiyong LIAN
  • Patent number: 9373958
    Abstract: A photovoltaic power plant includes solar cells and inverters that convert direct current generated by the solar cells to alternating current. The reactive powers generated by the inverters are based on a reactive power generated by a virtual inverter. The virtual inverter has an equivalent impedance representing the impedances of the inverters in the photovoltaic power plant. The reactive power setpoints of the inverters may be received from a local interpreter. The local interpreter may generate the reactive power setpoints from a global reactive power setpoint generated by a grid controller.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: June 21, 2016
    Assignee: SunPower Corporation
    Inventors: Seshadri Sivakumar, Jiyong Lian
  • Publication number: 20160087425
    Abstract: Arc flash mitigation devices are employed to protect personnel during maintenance of photovoltaic inverters. During normal operation, an alternating current (AC) output of a photovoltaic inverter is coupled to a low voltage winding of a step up transformer through a bus-bar (e.g., an electrically conductive interconnect), which has higher current rating than a fuse. During maintenance, the bus-bar is replaced with the fuse. The fuse may be employed in conjunction with a switch. The switch may be a disconnect switch that places the bus-bar in parallel with the fuse during normal operation, and decouples the bus-bar from the fuse during maintenance. The switch may also be a transfer switch that places either the bus-bar or the fuse in series with the AC output of the photovoltaic inverter and the low voltage winding of the step up transformer.
    Type: Application
    Filed: December 3, 2015
    Publication date: March 24, 2016
    Applicant: SunPower Corporation
    Inventors: Seshadri SIVAKUMAR, Jiyong LIAN, Venkat Reddy KONALA, David BARR, Priyantha SIRISOORIYA, Jacqueline AHMAD, Jason SPOKES
  • Patent number: 9240682
    Abstract: Arc flash mitigation devices are employed to protect personnel during maintenance of photovoltaic inverters. During normal operation, an alternating current (AC) output of a photovoltaic inverter is coupled to a low voltage winding of a step up transformer through a bus-bar (e.g., an electrically conductive interconnect), which has higher current rating than a fuse. During maintenance, the bus-bar is replaced with the fuse. The fuse may be employed in conjunction with a switch. The switch may be a disconnect switch that places the bus-bar in parallel with the fuse during normal operation, and decouples the bus-bar from the fuse during maintenance. The switch may also be a transfer switch that places either the bus-bar or the fuse in series with the AC output of the photovoltaic inverter and the low voltage winding of the step up transformer.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: January 19, 2016
    Assignee: SunPower Corporation
    Inventors: Seshadri Sivakumar, Jiyong Lian, Venkat Reddy Konala, David Barr, Priyantha Sirisooriya, Jacqueline Ahmad, Jason Spokes
  • Publication number: 20140078793
    Abstract: Arc flash mitigation devices are employed to protect personnel during maintenance of photovoltaic inverters. During normal operation, an alternating current (AC) output of a photovoltaic inverter is coupled to a low voltage winding of a step up transformer through a bus-bar (e.g., an electrically conductive interconnect), which has higher current rating than a fuse. During maintenance, the bus-bar is replaced with the fuse. The fuse may be employed in conjunction with a switch. The switch may be a disconnect switch that places the bus-bar in parallel with the fuse during normal operation, and decouples the bus-bar from the fuse during maintenance. The switch may also be a transfer switch that places either the bus-bar or the fuse in series with the AC output of the photovoltaic inverter and the low voltage winding of the step up transformer.
    Type: Application
    Filed: September 18, 2012
    Publication date: March 20, 2014
    Inventors: Seshadri SIVAKUMAR, Jiyong LIAN, Venkat Reddy KONALA, David BARR, Priyantha SIRISOORIYA, Jacqueline AHMAD, Jason SPOKES
  • Publication number: 20130250635
    Abstract: A photovoltaic power plant includes solar cells and inverters that convert direct current generated by the solar cells to alternating current. The reactive powers generated by the inverters are based on a reactive power generated by a virtual inverter. The virtual inverter has an equivalent impedance representing the impedances of the inverters in the photovoltaic power plant. The reactive power setpoints of the inverters may be received from a local interpreter. The local interpreter may generate the reactive power setpoints from a global reactive power setpoint generated by a grid controller.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 26, 2013
    Inventors: Seshadri SIVAKUMAR, Jiyong LIAN
  • Publication number: 20070246943
    Abstract: This invention provides a wind turbine-battery-dump load stand-alone renewable energy system and an optimal control of the same. The system may include both power conversion and control units. In one embodiment, the power conversion unit features a wind-turbine-driven three-phase induction generator, a diode rectifier, a battery charger, a boost dc/dc converter, a battery bank (48V), and a dc/ac inverter. A dump load is also used to dissipate excess power that is not required for either the battery charging or for the load. The integrated control unit may use the TMS320LF2407A DSP microcontroller from Texas Instruments, which allows operations of the wind power system and the battery storage system to be merged into a single package under a master controller. An embodiment of the control system features battery-charging control, battery voltage-boost control, dump load control, PWM inverter control, and system protection.
    Type: Application
    Filed: April 25, 2006
    Publication date: October 25, 2007
    Inventors: Liuchen Chang, Jiyong Lian