Patents by Inventor Jiyou Fu

Jiyou Fu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250259291
    Abstract: Methods, apparatuses, and software are disclosed for multilayer metrology. One method includes obtaining image data of an object with an SEM system, with the image data acquired at multiple landing energy levels. A composed image is generated by performing pixel-by-pixel image processing of the image data. A metrology characteristic is determined from the composed image and metrology is performed on a feature based on the metrology characteristic.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 14, 2025
    Applicant: ASML NETHERLANDS B.V.
    Inventor: Jiyou FU
  • Publication number: 20250182443
    Abstract: A method of characterizing an image. The method includes accessing a template contour that corresponds to a set of contour points extracted from the image. The method includes comparing the template contour and the extracted contour points based on a plurality of distances between locations on the template contour and the extracted contour points. The plurality of distances is weighted based on the locations on the template contour and overlap of the locations on the template contour with a blocking structure in the image. The method includes determining, based on the comparison, a matching geometry and/or a matching position of the template contour with the extracted contour points from the image.
    Type: Application
    Filed: February 17, 2023
    Publication date: June 5, 2025
    Applicant: ASML NETHERLANDS B.V.
    Inventor: Jiyou FU
  • Publication number: 20250044710
    Abstract: A method of image template matching for multiple process layers of, for example, semiconductor substrate with an adaptive weight map is described. An image template is provided with a weight map, which is adaptively updated based during template matching based on the position of the image template on the image. A method of template matching a grouped pattern or artifacts in a composed template is described, wherein the pattern comprises deemphasized areas weighted less than the image templates. A method of generating an image template based on a synthetic image is described. The synthetic image can be generated based on process and image modeling. A method of selecting a grouped pattern or artifacts and generating a composed template is described. A method of per layer image template matching is described.
    Type: Application
    Filed: December 13, 2022
    Publication date: February 6, 2025
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Jiyou FU, Jing SU, Chenxi LIN, Jiao LIANG, Guangqing CHEN, Yi ZOU
  • Patent number: 12085863
    Abstract: A method for determining stochastic edge placement error associated with a pattern. The method includes acquiring, via a metrology tool, a plurality of images of the pattern at a defined location on the substrate without performing a substrate alignment therebetween; and generating at least two data: (i) first data associated with the pattern using a first set of images of the plurality of images, and (ii) second data associated with the pattern using a second set of images of the plurality of images. The first set of images and the second set of images include at least one different image. The method further includes determining (e.g., via a decomposition algorithm), using the first data and the second data associated with the pattern at the defined location, the stochastic edge placement error associated with the pattern.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: September 10, 2024
    Assignee: ASML NETHERLANDS B.V.
    Inventor: Jiyou Fu
  • Publication number: 20230280659
    Abstract: A method for determining stochastic edge placement error associated with a pattern. The method includes acquiring, via a metrology tool, a plurality of images of the pattern at a defined location on the substrate without performing a substrate alignment therebetween; and generating at least two data: (i) first data associated with the pattern using a first set of images of the plurality of images, and (ii) second data associated with the pattern using a second set of images of the plurality of images. The first set of images and the second set of images include at least one different image. The method further includes determining (e.g., via a decomposition algorithm), using the first data and the second data associated with the pattern at the defined location, the stochastic edge placement error associated with the pattern.
    Type: Application
    Filed: April 24, 2023
    Publication date: September 7, 2023
    Applicant: ASML NETHERLANDS B.V.
    Inventor: Jiyou FU
  • Patent number: 11669019
    Abstract: A method for determining stochastic edge placement error associated with a pattern. The method includes acquiring, via a metrology tool, a plurality of images of the pattern at a defined location on the substrate without performing a substrate alignment therebetween; and generating at least two data: (i) first data associated with the pattern using a first set of images of the plurality of images, and (ii) second data associated with the pattern using a second set of images of the plurality of images. The first set of images and the second set of images include at least one different image. The method further includes determining (e.g., via a decomposition algorithm), using the first data and the second data associated with the pattern at the defined location, the stochastic edge placement error associated with the pattern.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: June 6, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventor: Jiyou Fu
  • Publication number: 20220229375
    Abstract: A method for determining stochastic edge placement error associated with a pattern. The method includes acquiring, via a metrology tool, a plurality of images of the pattern at a defined location on the substrate without performing a substrate alignment therebetween; and generating at least two data: (i) first data associated with the pattern using a first set of images of the plurality of images, and (ii) second data associated with the pattern using a second set of images of the plurality of images. The first set of images and the second set of images include at least one different image. The method further includes determining (e.g., via a decomposition algorithm), using the first data and the second data associated with the pattern at the defined location, the stochastic edge placement error associated with the pattern.
    Type: Application
    Filed: April 28, 2020
    Publication date: July 21, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventor: Jiyou FU
  • Patent number: 10234271
    Abstract: A spectroscopic beam profile metrology system simultaneously detects measurement signals over a large wavelength range and a large range of angles of incidence (AOI). In one aspect, a multiple wavelength illumination beam is reshaped to a narrow line shaped beam of light before projection onto a specimen by a high numerical aperture objective. After interaction with the specimen, the collected light is passes through a wavelength dispersive element that projects the range of AOIs along one direction and wavelength components along another direction of a two-dimensional detector. Thus, the measurement signals detected at each pixel of the detector each represent a scatterometry signal for a particular AOI and a particular wavelength. In another aspect, a hyperspectral detector is employed to simultaneously detect measurement signals over a large wavelength range, range of AOIs, and range of azimuth angles.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: March 19, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Jiyou Fu, Noam Sapiens, Kevin A. Peterlinz, Stilian Ivanov Pandev
  • Publication number: 20180347961
    Abstract: A spectroscopic beam profile metrology system simultaneously detects measurement signals over a large wavelength range and a large range of angles of incidence (AOI). In one aspect, a multiple wavelength illumination beam is reshaped to a narrow line shaped beam of light before projection onto a specimen by a high numerical aperture objective. After interaction with the specimen, the collected light is passes through a wavelength dispersive element that projects the range of AOIs along one direction and wavelength components along another direction of a two-dimensional detector. Thus, the measurement signals detected at each pixel of the detector each represent a scatterometry signal for a particular AOI and a particular wavelength. In another aspect, a hyperspectral detector is employed to simultaneously detect measurement signals over a large wavelength range, range of AOIs, and range of azimuth angles.
    Type: Application
    Filed: August 10, 2018
    Publication date: December 6, 2018
    Inventors: Jiyou Fu, Noam Sapiens, Kevin A. Peterlinz, Stilian Ivanov Pandev
  • Patent number: 10101676
    Abstract: A spectroscopic beam profile metrology system simultaneously detects measurement signals over a large wavelength range and a large range of angles of incidence (AOI). In one aspect, a multiple wavelength illumination beam is reshaped to a narrow line shaped beam of light that is projected onto an overlay metrology target such that the direction of the line shaped beam is aligned with the direction of extent of a grating structure of the overlay metrology target. Collected light is dispersed across a detector according to AOI in one direction and according to wavelength in another direction. The measured signal at each detector pixel is associated with a particular AOI and wavelength. The collected light includes first order diffracted light, zero order diffracted light, or a combination thereof. In some embodiments, first order diffracted light and zero order diffracted light are detected over separate areas of the detector.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: October 16, 2018
    Assignee: KLA—Tencor Corporation
    Inventors: Jiyou Fu, Noam Sapiens, Kevin A. Peterlinz, Stilian Ivanov Pandev
  • Patent number: 10072921
    Abstract: A spectroscopic beam profile metrology system simultaneously detects measurement signals over a large wavelength range and a large range of angles of incidence (AOI). In one aspect, a multiple wavelength illumination beam is reshaped to a narrow line shaped beam of light before projection onto a specimen by a high numerical aperture objective. After interaction with the specimen, the collected light is passes through a wavelength dispersive element that projects the range of AOIs along one direction and wavelength components along another direction of a two-dimensional detector. Thus, the measurement signals detected at each pixel of the detector each represent a scatterometry signal for a particular AOI and a particular wavelength. In another aspect, a hyperspectral detector is employed to simultaneously detect measurement signals over a large wavelength range, range of AOIs, and range of azimuth angles.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: September 11, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Jiyou Fu, Noam Sapiens, Kevin A. Peterlinz, Stilian Ivanov Pandev
  • Patent number: 9739719
    Abstract: Methods and systems for simultaneous detection and linked processing of field signals and pupil signals are presented herein. In one aspect, estimates of one or more structural or process parameter values are based on field measurement signals, pupil measurement signals, or both. In addition, the quality of the measurements of the one or more structural or process parameter values is characterized based on the field measurement signals, pupil measurement signals, or both. In some embodiments, field measurement signals are processed to estimate one or more structural or process parameter values, and pupil measurement signals are processed to characterize the field measurement conditions. In some other embodiments, pupil measurement signals are processed to estimate one or more structural or process parameter values, and field measurement signals are processed to characterize the pupil measurement conditions.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: August 22, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Jiyou Fu, Noam Sapiens
  • Publication number: 20170082932
    Abstract: A spectroscopic beam profile metrology system simultaneously detects measurement signals over a large wavelength range and a large range of angles of incidence (AOI). In one aspect, a multiple wavelength illumination beam is reshaped to a narrow line shaped beam of light that is projected onto an overlay metrology target such that the direction of the line shaped beam is aligned with the direction of extent of a grating structure of the overlay metrology target. Collected light is dispersed across a detector according to AOI in one direction and according to wavelength in another direction. The measured signal at each detector pixel is associated with a particular AOI and wavelength. The collected light includes first order diffracted light, zero order diffracted light, or a combination thereof. In some embodiments, first order diffracted light and zero order diffracted light are detected over separate areas of the detector.
    Type: Application
    Filed: September 20, 2016
    Publication date: March 23, 2017
    Inventors: Jiyou Fu, Noam Sapiens, Kevin A. Peterlinz, Stilian Ivanov Pandev
  • Publication number: 20160161245
    Abstract: A spectroscopic beam profile metrology system simultaneously detects measurement signals over a large wavelength range and a large range of angles of incidence (AOI). In one aspect, a multiple wavelength illumination beam is reshaped to a narrow line shaped beam of light before projection onto a specimen by a high numerical aperture objective. After interaction with the specimen, the collected light is passes through a wavelength dispersive element that projects the range of AOIs along one direction and wavelength components along another direction of a two-dimensional detector. Thus, the measurement signals detected at each pixel of the detector each represent a scatterometry signal for a particular AOI and a particular wavelength. In another aspect, a hyperspectral detector is employed to simultaneously detect measurement signals over a large wavelength range, range of AOIs, and range of azimuth angles.
    Type: Application
    Filed: December 4, 2015
    Publication date: June 9, 2016
    Inventors: Jiyou Fu, Noam Sapiens, Kevin A. Peterlinz, Stilian Ivanov Pandev
  • Publication number: 20160123894
    Abstract: Methods and systems for simultaneous detection and linked processing of field signals and pupil signals are presented herein. In one aspect, estimates of one or more structural or process parameter values are based on field measurement signals, pupil measurement signals, or both. In addition, the quality of the measurements of the one or more structural or process parameter values is characterized based on the field measurement signals, pupil measurement signals, or both. In some embodiments, field measurement signals are processed to estimate one or more structural or process parameter values, and pupil measurement signals are processed to characterize the field measurement conditions. In some other embodiments, pupil measurement signals are processed to estimate one or more structural or process parameter values, and field measurement signals are processed to characterize the pupil measurement conditions.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 5, 2016
    Inventors: Jiyou Fu, Noam Sapiens
  • Patent number: 7903250
    Abstract: A method of performing an investigation of a substrate, by measuring a reflectivity of the substrate, comparing the reflectivity of the substrate to an anticipated reflectivity value, selectively subjecting the substrate to a laser beam for a predetermined duration and at a predetermined energy only when the reflectivity of the substrate is within a specified tolerance of the anticipated reflectivity value, selectively signaling a fault condition when the reflectivity of the substrate is not within the specified tolerance of the anticipated reflectivity value, and selectively performing the investigation of the substrate only when the reflectivity of the substrate is within the specified tolerance of the anticipated reflectivity value.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: March 8, 2011
    Assignee: KLA-Tencor Corporation
    Inventors: Fabio A. Faccini, Torsten R. Kaack, Jiyou Fu, Zhiming Jiang
  • Patent number: 7277172
    Abstract: Systems and methods are disclosed for using ellipsometer configurations to measure the partial Mueller matrix and the complete Jones matrix of a system that may be isotropic or anisotropic. In one embodiment two or more signals, which do not necessarily satisfy any symmetry assumptions individually, are combined into a composite signal which satisfies a symmetry assumption. The individual signals are collected at two or more analyzer angles. Symmetry properties of the composite signals allow easy extraction of overlay information for any relative orientation of the incident light beam with respect to a 1D grating target, as well as for targets comprising general 2D gratings. Signals of a certain symmetry property also allow measurement of profile asymmetry in a very efficient manner. In another embodiment a measurement methodology is defined to measure only signals which satisfy a symmetry assumption. An optional embodiment comprises a single polarization element serving as polarizer and analyzer.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: October 2, 2007
    Assignee: KLA-Tencor Technologies, Corporation
    Inventors: Daniel Kandel, Kenneth P. Gross, Michael Friedmann, Jiyou Fu, Shakar Krishnan, Boris Golovanevsky
  • Publication number: 20060274310
    Abstract: Systems and methods are disclosed for using ellipsometer configurations to measure the partial Mueller matrix and the complete Jones matrix of a system that may be isotropic or anisotropic. In one embodiment two or more signals, which do not necessarily satisfy any symmetry assumptions individually, are combined into a composite signal which satisfies a symmetry assumption. The individual signals are collected at two or more analyzer angles. Symmetry properties of the composite signals allow easy extraction of overlay information for any relative orientation of the incident light beam with respect to a ID grating target, as well as for targets comprising general 2D gratings. Signals of a certain symmetry property also allow measurement of profile asymmetry in a very efficient manner. In another embodiment a measurement methodology is defined to measure only signals which satisfy a symmetry assumption. An optional embodiment comprises a single polarization element serving as polarizer and analyzer.
    Type: Application
    Filed: January 4, 2006
    Publication date: December 7, 2006
    Inventors: Daniel Kandel, Kenneth Gross, Michael Friedmann, Jiyou Fu, Shankar Krishnan, Boris Golovanevsky