Patents by Inventor Jiyuan Fan

Jiyuan Fan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12218501
    Abstract: An adaptive electric power capacitor system includes a number of normally in-service capacitor modules and a number of normally out-of-service reserve capacitor modules. Each capacitor module includes a controller-sensor and a switch allowing the capacitor to be independently switched into or out of service while only momentarily taking the entire capacitor bank out of service during the switching operation. For example, a failed in-service capacitor module may be switched out of service, while a reserve capacitor module is switched into service to replace the failed capacitor module. In addition to providing built-in reserve capacitors, the adaptive capacitor system manages the capacitors for the electric phases taking into account unbalanced reactive power loads among the electric power phases to mitigate the unbalanced reactive power state.
    Type: Grant
    Filed: July 18, 2024
    Date of Patent: February 4, 2025
    Assignee: Southern States LLC
    Inventors: Hua Fan, Jiyuan Fan
  • Patent number: 12119636
    Abstract: Embodiments of the present invention include a test-boost electric power recloser that limits the duration of the test current imposed on the power line to less than two electric power cycles, and preferably less than one electric power cycle, when attempting to reclose into a fault. The test-boost recloser sends a test pulse causing a non-latching close followed by a boost pulse causing a latching close if waveform analysis based on the test close indicates that the fault has likely cleared. The test-boost approach can typically be implemented through a software and calibration upgrade to a conventional single-coil recloser, accomplishing results comparable to a dual-actuator recloser at a much lower cost. The recloser may perform iterative and feedback learning feedback processes to automatically improve its operation over time in response to measured fault and non-fault conditions and its success in predicting whether faults have cleared.
    Type: Grant
    Filed: May 17, 2022
    Date of Patent: October 15, 2024
    Assignee: SOUTHERN STATES, LLC
    Inventors: Jiyuan Fan, Hua Fan, Tan Tran, Joseph R. Rostron, Paul A Reneau
  • Patent number: 12068589
    Abstract: A system or method for monitoring an electric power lightning arrester including an arrester current sensor providing an arrester current measurement, and an arrester voltage sensor providing an arrester voltage measurement. The system detects a switching signature based on the arrester current measurement or the arrester voltage measurement distinguished from background noise and lightning signatures and computes a measured arrester impedance based on the arrester current and arrester voltage measurements. The system then compares the measured arrester impedance to a nominal or historical arrester impedance, determines that the arrester is faltering based on the comparison of the measured arrester impedance to the nominal or historical arrester impedance, and places an order for replacement of the arrester based on the determination that the arrester is faltering.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: August 20, 2024
    Assignee: SOUTHERN STATES, LLC
    Inventors: Joseph R Rostron, Rajesh Anand, Jiyuan Fan
  • Publication number: 20240146047
    Abstract: A system or method for monitoring an electric power lightning arrester including an arrester current sensor providing an arrester current measurement, and an arrester voltage sensor providing an arrester voltage measurement. The system detects a switching signature based on the arrester current measurement or the arrester voltage measurement distinguished from background noise and lightning signatures and computes a measured arrester impedance based on the arrester current and arrester voltage measurements. The system then compares the measured arrester impedance to a nominal or historical arrester impedance, determines that the arrester is faltering based on the comparison of the measured arrester impedance to the nominal or historical arrester impedance, and places an order for replacement of the arrester based on the determination that the arrester is faltering.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 2, 2024
    Inventors: Joseph R Rostron, Rajesh Anand, Jiyuan Fan
  • Patent number: 11791622
    Abstract: A time-admittance fault detection and isolation system includes a series of time-admittance switches spaced apart along the power line, each including a respective time-admittance function. Together, the time-admittance functions define a cascade trip sequence in a downstream-to-upstream direction, which autonomously causes a closest upstream time-admittance switch to a fault to trip to isolate the fault on an upstream side of the fault without communication with the time-admittance switches. The fault detection and isolation system may also include a radio communicating a trip signal from the closest upstream time-admittance switch to the fault to a closest downstream time-admittance switch to the fault. The trip signal causes the closest downstream time-admittance switch to the fault to trip to isolate the fault on a downstream side of the fault. A tie switch closes to back-feed a portion of the electric power line downstream from the closest downstream time-admittance switch to the fault.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: October 17, 2023
    Assignee: SOUTHERN STATES, LLC
    Inventors: Joseph R Rostron, Jiyuan Fan
  • Publication number: 20230023693
    Abstract: Embodiments of the present invention include a test-boost electric power recloser that limits the duration of the test current imposed on the power line to less than two electric power cycles, and preferably less than one electric power cycle, when attempting to reclose into a fault. The test-boost recloser sends a test pulse causing a non-latching close followed by a boost pulse causing a latching close if waveform analysis based on the test close indicates that the fault has likely cleared. The test-boost approach can typically be implemented through a software and calibration upgrade to a conventional single-coil recloser, accomplishing results comparable to a dual-actuator recloser at a much lower cost. The recloser may perform iterative and feedback learning feedback processes to automatically improve its operation over time in response to measured fault and non-fault conditions and its success in predicting whether faults have cleared.
    Type: Application
    Filed: May 17, 2022
    Publication date: January 26, 2023
    Inventors: Jiyuan Fan, Steve Hua Fan, Tan Tran, Joseph R. Rostron, Buddy Reneau
  • Publication number: 20220376491
    Abstract: A time-admittance fault detection and isolation system includes a series of time-admittance switches spaced apart along the power line, each including a respective time-admittance function. Together, the time-admittance functions define a cascade trip sequence in a downstream-to-upstream direction, which autonomously causes a closest upstream time-admittance switch to a fault to trip to isolate the fault on an upstream side of the fault without communication with the time-admittance switches. The fault detection and isolation system may also include a radio communicating a trip signal from the closest upstream time-admittance switch to the fault to a closest downstream time-admittance switch to the fault. The trip signal causes the closest downstream time-admittance switch to the fault to trip to isolate the fault on a downstream side of the fault. A tie switch closes to back-feed a portion of the electric power line downstream from the closest downstream time-admittance switch to the fault.
    Type: Application
    Filed: May 11, 2022
    Publication date: November 24, 2022
    Inventors: Joseph R Rostron, Jiyuan Fan
  • Patent number: 11489365
    Abstract: A smart switch allows distributed generators to “ride through” non-three-phase faults by very quickly detecting a non-three-phase phase fault, locating the fault, identifying the “responsive sectionalizer switches” that will be involved in clearing or isolating the fault, and selecting one of the responsive sectionalizer switches to direct back-feed tie switch operations. The responsive sectionalizer switches trip only the faulted phase(s), and the selected sectionalizer switch instructs a back-feed tie switch to close to back-feed the distributed generators prior to conducting the typical fault response operation. This typically occurs within about three cycles, and is completed before the normal fault clearing and isolation procedures, which momentarily disconnect all three phases to the distributed generators from the normally connected feeder breaker.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: November 1, 2022
    Assignee: Southern States LLC
    Inventors: Jiyuan Fan, Hua Fan, Joseph R Rostron
  • Publication number: 20220123589
    Abstract: A smart switch allows distributed generators to “ride through” non-three-phase faults by very quickly detecting a non-three-phase phase fault, locating the fault, identifying the “responsive sectionalizer switches” that will be involved in clearing or isolating the fault, and selecting one of the responsive sectionalizer switches to direct back-feed tie switch operations. The responsive sectionalizer switches trip only the faulted phase(s), and the selected sectionalizer switch instructs a back-feed tie switch to close to back-feed the distributed generators prior to conducting the typical fault response operation. This typically occurs within about three cycles, and is completed before the normal fault clearing and isolation procedures, which momentarily disconnect all three phases to the distributed generators from the normally connected feeder breaker.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 21, 2022
    Inventors: Jiyuan Fan, Hua Fan, Joseph R. Rostron
  • Patent number: 11223196
    Abstract: A fault-preventing circuit recloser includes a ballast impedance, power line current and voltage monitors, and controller that operates the switch based on measurements obtained from the current and voltage monitors. The controller aborts the closing (i.e., reopens the switch) when the controller detects that the switch has closed into faulted line. The circuit recloser temporarily introduces the ballast impedance into the circuit during the closing operation to limit the current spike and voltage dip caused by initially closing the switch into the faulted line. The circuit recloser also temporarily introduces the ballast impedance into the circuit during the opening operation to limit the voltage transient that can be caused by initially opening a load-carrying power line. Different ballast resistor insertion times are applied depending on the type of recloser operation (opening or closing) and whether a fault is detected.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: January 11, 2022
    Assignee: Southern States, LLC
    Inventors: Joseph R Rostron, Jiyuan Fan, Teng Hu
  • Patent number: 11063425
    Abstract: Fault detection, isolation and restoration systems for electric power systems using “smart switch” points that autonomously coordinate operations to minimize the number of customers affected by outages and their durations, without relying on communications with a central controller or between the smart switch points. Each smart recloser can be individually programmed to operate as a tie-switch, a Type-A (normal or default type) sectionalizer, or a Type-B (special type) sectionalizer. The Type-A recloser automatically opens when it detects a fault, uses a direction-to-fault and zone-based distance-to-fault operating protocol, and stays “as is” with no automatic opening when power (voltage) is lost on both sides of the switch. The Type-B sectionalizer does the same thing and is further configured to automatically open when it detects that it is deenergized on both sides for a pre-defined time period, and to operate like a tie-switch once open.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: July 13, 2021
    Assignee: Southern States, LLC
    Inventors: Jiyuan Fan, Joseph R Rostron, Hua Fan, David Moore, Raj Anand, Brian Berner, Buddy Reneau
  • Patent number: 10996244
    Abstract: A high voltage capacitor includes multiple capacitor packs housed in a canister. A capacitor pack status monitor includes a current sensor measuring an electric current through an associated capacitor pack and a radio transmitting a first signal representative of the electric current through a selected capacitor pack. The monitor also includes a voltage sensor measuring an electric voltage across the associated capacitor pack and a radio transmitting a second signal representative of the electric voltage across the selected capacitor pack. Electronics compute an impedance associated with each capacitor pack. Each current sensor may include a current transformer positioned around a main power line energizing a respective capacitor pack.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: May 4, 2021
    Assignee: Southern States, LLC
    Inventors: Joseph R Rostron, Josh Keister, Jiyuan Fan, Karl Fender
  • Patent number: 10923907
    Abstract: Electric power Fault detection, isolation and restoration (FDIR) systems using “smart switches” that autonomously coordinate operations to minimize the number of customers affected by outages and their durations, without relying on communications with a central controller or between the smart switch points. The smart switches typically operate during the substation breaker reclose cycles while the substation breakers are open, which enables the substation breakers to reclose successfully to restore service within their normal reclosing cycles. Alternatively, the smart switch may be timed to operate before the substation breakers trip to effectively remove the substation breakers from the fault isolation process. Both approaches allow the FDIR system to be installed with minimal reconfiguration of the substation protection scheme.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: February 16, 2021
    Assignee: Southern States, LLC
    Inventors: Jiyuan Fan, Joseph R Rostron, Hua Fan, David Moore, Raj Anand, Brian Berner, Buddy Reneau
  • Patent number: 10698010
    Abstract: A high voltage electric power line monitor includes a current sensor, a voltage sensor, an energy harvesting power supply, and a communication device. The monitor is supported by an overhead power line support structure, such an insulator housing a sectionalizing switch. The current sensor coil and the energy harvesting coils are positioned transverse to the power line with the power lane passing through the coils. A foil patch voltage sensor and a communications antenna are carried on an electronics board positioned parallel to the monitored power line, typically below the current sensor. Both the current sensor and the voltage sensor are positioned adjacent to, but spaced apart from, the monitored power line creating an air gap between the monitor and the power line. The sensors are housed within a Faraday cage to shield the current sensor from electromagnetic contamination.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: June 30, 2020
    Assignee: Southern States
    Inventors: Josh Keister, Joseph R Rostron, Jiyuan Fan, Tan Tran
  • Patent number: 10627431
    Abstract: The present invention may be embodied in an in-line high voltage electric power line monitor including a DC current sensor, an AC current sensor, an energy harvesting power supply, and a communication device. The in-line power line monitor includes a bus bar that connects in series with the monitored power line. For example, the in-line power line monitor may be connected at the junction point between the monitored power line and a support structure, such a sectionalizing switch that supports the monitor positioned between the switch and the power line. A pair of DC current measurement pickups are spaced apart on the bus bar and operatively connected to the microprocessor. The in-line power line monitor also includes an AC current sensor coil and an energy harvesting device (e.g., inductive coil) that surround the bus bar. The AC current sensor coil and the power supply coil are positioned adjacent to, but spaced apart from, the bus bar.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: April 21, 2020
    Assignee: Southern States, LLC
    Inventors: Josh Keister, Joseph R Rostron, Jiyuan Fan, Tan Tran
  • Publication number: 20200049743
    Abstract: The present invention may be embodied in an in-line high voltage electric power line monitor including a DC current sensor, an AC current sensor, an energy harvesting power supply, and a communication device. The in-line power line monitor includes a bus bar that connects in series with the monitored power line. For example, the in-line power line monitor may be connected at the junction point between the monitored power line and a support structure, such a sectionalizing switch that supports the monitor positioned between the switch and the power line. A pair of DC current measurement pickups are spaced apart on the bus bar and operatively connected to the microprocessor. The in-line power line monitor also includes an AC current sensor coil and an energy harvesting device (e.g., inductive coil) that surround the bus bar. The AC current sensor coil and the power supply coil are positioned adjacent to, but spaced apart from, the bus bar.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Josh Keister, Joseph R Rostron, Jiyuan Fan, Tan Tran
  • Patent number: 10481186
    Abstract: The present invention may be embodied in an in-line high voltage electric power line monitor including a DC current sensor, an AC current sensor, a voltage sensor, an energy harvesting power supply, and a communication device configured. The in-line power line monitor includes a bus bar that connects in series with the monitored power line. For example, the in-line power line monitor may be connected at the junction point between the monitored power line and a support structure, such a sectionalizing switch that supports the monitor positioned between the switch and the power line. A pair of DC current measurement pickups are spaced apart on the bus bar and operatively connected to the microprocessor. The in-line power line monitor also includes an AC current sensor coil and an energy harvesting device (e.g., inductive coil) that surround the bus bar. The AC current sensor coil, the power supply coil and the voltage sensor positioned adjacent to, but spaced apart from, the bus bar.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: November 19, 2019
    Assignee: Southern States, LLC
    Inventors: Josh Keister, Joseph R Rostron, Jiyuan Fan, Tan Tran
  • Publication number: 20190317133
    Abstract: A high voltage capacitor includes multiple capacitor packs housed in a canister. A capacitor pack status monitor includes a current sensor measuring an electric current through an associated capacitor pack and a radio transmitting a first signal representative of the electric current through a selected capacitor pack. The monitor also includes a voltage sensor measuring an electric voltage across the associated capacitor pack and a radio transmitting a second signal representative of the electric voltage across the selected capacitor pack. Electronics compute an impedance associated with each capacitor pack. Each current sensor may include a current transformer positioned around a main power line energizing a respective capacitor pack.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 17, 2019
    Applicant: Southern States, LLC
    Inventors: Joseph R Rostron, Josh Keister, Jiyuan Fan, Karl Fender
  • Publication number: 20190277904
    Abstract: Fault detection, isolation and restoration systems for electric power systems using “smart switch” points that autonomously coordinate operations to minimize the number of customers affected by outages and their durations, without relying on communications with a central controller or between the smart switch points. Each smart recloser can be individually programmed to operate as a tie-switch, a Type-A (normal or default type) sectionalizer, or a Type-B (special type) sectionalizer. The Type-A recloser automatically opens when it detects a fault, uses a direction-to-fault and zone-based distance-to-fault operating protocol, and stays “as is” with no automatic opening when power (voltage) is lost on both sides of the switch. The Type-B sectionalizer does the same thing and is further configured to automatically open when it detects that it is deenergized on both sides for a pre-defined time period, and to operate like a tie-switch once open.
    Type: Application
    Filed: March 4, 2019
    Publication date: September 12, 2019
    Inventors: Jiyuan Fan, Joseph R. Rostron, Hua Fan, David Moore, Raj Anand, Brian Berner, Buddy Reneau
  • Publication number: 20190280476
    Abstract: Electric power Fault detection, isolation and restoration (FDIR) systems using “smart switches” that autonomously coordinate operations to minimize the number of customers affected by outages and their durations, without relying on communications with a central controller or between the smart switch points. The smart switches typically operate during the substation breaker reclose cycles while the substation breakers are open, which enables the substation breakers to reclose successfully to restore service within their normal reclosing cycles. Alternatively, the smart switch may be timed to operate before the substation breakers trip to effectively remove the substation breakers from the fault isolation process. Both approaches allow the FDIR system to be installed with minimal reconfiguration of the substation protection scheme.
    Type: Application
    Filed: March 4, 2019
    Publication date: September 12, 2019
    Inventors: Jiyuan Fan, Joseph R. Rostron, Hua Fan, David Moore, Raj Anand, Brian Berner, Buddy Reneau