Patents by Inventor Jizhou Song

Jizhou Song has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10333069
    Abstract: The present invention provides methods for purifying a layer of carbon nanotubes comprising providing a precursor layer of substantially aligned carbon nanotubes supported by a substrate, wherein the precursor layer comprises a mixture of first carbon nanotubes and second carbon nanotubes; selectively heating the first carbon nanotubes; and separating the first carbon nanotubes from the second carbon nanotubes, thereby generating a purified layer of carbon nanotubes. Devices benefiting from enhanced electrical properties enabled by the purified layer of carbon nanotubes are also described.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: June 25, 2019
    Assignees: The Board of Trustees of The University of Illinois, Northwestern University, University of Miami
    Inventors: John A. Rogers, William L. Wilson, Sung Hun Jin, Simon N. Dunham, Xu Xie, Ahmad Islam, Frank Du, Yonggang Huang, Jizhou Song
  • Patent number: 10292261
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: May 14, 2019
    Assignees: The Board of Trustees of the University of Illinois, Northwestern University
    Inventors: John A Rogers, Yonggang Huang, Heung Cho Ko, Mark Stoykovich, Won Mook Choi, Jizhou Song, Jong Hyun Ahn, Dae Hyeong Kim
  • Patent number: 10064269
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: August 28, 2018
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A Rogers, Yonggang Huang, Heung Cho Ko, Mark Stoykovich, Won Mook Choi, Jizhou Song, Jong Hyun Ahn, Dae Hyeong Kim
  • Patent number: 9825229
    Abstract: The present invention provides methods for purifying a layer of carbon nanotubes comprising providing a precursor layer of substantially aligned carbon nanotubes supported by a substrate, wherein the precursor layer comprises a mixture of first carbon nanotubes and second carbon nanotubes; selectively heating the first carbon nanotubes; and separating the first carbon nanotubes from the second carbon nanotubes, thereby generating a purified layer of carbon nanotubes. Devices benefiting from enhanced electrical properties enabled by the purified layer of carbon nanotubes are also described.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: November 21, 2017
    Assignees: The Board of Trustees of the University of Illinois, Northwestern University, University of Miami
    Inventors: John A. Rogers, William L. Wilson, Sung Hun Jin, Simon N. Dunham, Xu Xie, Ahmad Islam, Frank Du, Yonggang Huang, Jizhou Song
  • Publication number: 20170291817
    Abstract: The present invention provides methods for purifying a layer of carbon nanotubes comprising providing a precursor layer of substantially aligned carbon nanotubes supported by a substrate, wherein the precursor layer comprises a mixture of first carbon nanotubes and second carbon nanotubes; selectively heating the first carbon nanotubes; and separating the first carbon nanotubes from the second carbon nanotubes, thereby generating a purified layer of carbon nanotubes. Devices benefiting from enhanced electrical properties enabled by the purified layer of carbon nanotubes are also described.
    Type: Application
    Filed: November 17, 2016
    Publication date: October 12, 2017
    Inventors: John A. ROGERS, William L. WILSON, Sung Hun JIN, Simon N. DUNHAM, Xu XIE, Ahmed ISLAM, Frank DU, Yonggang HUANG, Jizhou SONG
  • Publication number: 20160133843
    Abstract: The present invention provides methods for purifying a layer of carbon nanotubes comprising providing a precursor layer of substantially aligned carbon nanotubes supported by a substrate, wherein the precursor layer comprises a mixture of first carbon nanotubes and second carbon nanotubes; selectively heating the first carbon nanotubes; and separating the first carbon nanotubes from the second carbon nanotubes, thereby generating a purified layer of carbon nanotubes. Devices benefiting from enhanced electrical properties enabled by the purified layer of carbon nanotubes are also described.
    Type: Application
    Filed: April 3, 2014
    Publication date: May 12, 2016
    Inventors: John A. ROGERS, William L. WILSON, Sung Hun JIN, Simon N. DUNHAM, Xu XIE, Ahmed ISLAM, Frank DU, Yonggang HUANG, Jizhou SONG
  • Publication number: 20150237711
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Application
    Filed: May 7, 2015
    Publication date: August 20, 2015
    Inventors: John A. ROGERS, Yonggang HUANG, Heung Cho KO, Mark STOYKOVICH, Won Mook CHOI, Jizhou SONG, Jong Hyun AHN, Dae Hyeong KIM
  • Publication number: 20150181700
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Application
    Filed: October 22, 2014
    Publication date: June 25, 2015
    Inventors: John A ROGERS, Yonggang HUANG, Heung Cho KO, Mark STOYKOVICH, Won Mook CHOI, Jizhou SONG, Jong Hyun AHN, Dae Hyeong KIM
  • Patent number: 8905772
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: December 9, 2014
    Assignees: The Board of Trustees of the University of Illinois, Northwestern University
    Inventors: John A Rogers, Yonggang Huang, Heung Cho Ko, Mark Stoykovich, Won Mook Choi, Jizhou Song, Jong Hyun Ahn, Dae Hyeong Kim
  • Publication number: 20140140020
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Application
    Filed: August 23, 2013
    Publication date: May 22, 2014
    Inventors: John A. ROGERS, Yonggang HUANG, Heung Cho KO, Mark STOYKOVICH, Won Mook CHOI, Jizhou SONG, Jong Hyun AHN, Dae Hyeong KIM
  • Patent number: 8552299
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: October 8, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Yonggang Huang, Heung Cho Ko, Mark Stoykovich, Won Mook Choi, Jizhou Song, Jong Hyun Ahn, Dae Hyeong Kim
  • Publication number: 20100002402
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Application
    Filed: March 5, 2009
    Publication date: January 7, 2010
    Inventors: John A. Rogers, Yonggang Huang, Heung Cho Ko, Mark Stoykovich, Won Mook Choi, Jizhou Song, Jong Hyun Ahn, Dae Hyeong Kim