Patents by Inventor Jo Ann Marie Canich

Jo Ann Marie Canich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7524910
    Abstract: Embodiments of the present invention relate to article comprising a polymer comprising one or more C3 to C40 olefins, optionally one or more diolefins, and less than 5 mole % of ethylene having a Dot T-Peel of 1 Newton or more, a branching index (g?) of 0.95 or less measured at the Mz of the polymer; and an Mw of 100,000 or less. This invention further relates to a process to produce an olefin polymer comprising: 1) selecting a first catalyst component capable of producing a polymer having an Mw of 100,000 or less and a crystallinity of 20% or less; 2) selecting a second catalyst component capable of producing polymer having an Mw of 100,000 or less and a crystallinity of 40% or more; 3) contacting the catalyst components in the presence of one or more activators with one or more C3 to C40 olefins, in a reaction zone.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: April 28, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peijun Jiang, Keith Allen Nelson, Christopher Lewis Curry, Armenag Hagop Dekmezian, Charles Lewis Sims, Ramin Abhari, Cesar Alberto Garcia-Franco, Jo Ann Marie Canich, Nicolas Kappes, Michel Louis Faissat, Lutz Erich Jacob
  • Publication number: 20090069475
    Abstract: This invention relates to a polymer comprising one or more C3 to C40 olefins, optionally one or more diolefins, and less than 15 mole % of ethylene, where the polymer has: a) a Dot T-Peel of 1 Newton or more; and b) a branching index (g?) of 0.95 or less measured at the Mz of the polymer; c) an Mw of 100,000 or less. This invention also relates a polymer comprising one or more C3 to C40 olefins where the polymer has: a) a Dot T-Peel of 1 Newton or more on Kraft paper; b) a branching index (g?) of 0.95 or less measured at the Mz of the polymer; c) a Mw of 10,000 to 100,000; and d) a heat of fusion of 1 to 70 J/g. This invention also relates a polymer comprising one or more C3 to C40 olefins where the polymer has: a) a Dot T-Peel of 1 Newton or more on Kraft paper; b) a branching index (g?) of 0.98 or less measured at the Mz of the polymer; c) a Mw of 10,000 to 60,000; d) a heat of fusion of 1 to 50 J/g.
    Type: Application
    Filed: August 2, 2007
    Publication date: March 12, 2009
    Inventors: Peijun Jiang, Armenag Hagop Dekmezian, Jo Ann Marie Canich, Charles Lewis Sims, Ramin Abhari, Cesar Alberto Garcia-Franco, David Raymond Johnsrud
  • Publication number: 20080312380
    Abstract: A bimodal polyethylene composition that includes ethylene-derived units, and, optionally, one or more other olefin-derived units, wherein the bimodal polyethylene composition possesses a density of at least 0.940 g/cc, an average molecular weight (Mw) of from 200,000 to 370,000, a z-average molecular weight (Mz) of from 1,500,000 to 3,400,000 Daltons, and a z+1 average molecular weight (Mz+1) of from 2,500,000 to 6,800,000 Daltons, is provided in various embodiments. Articles made therefrom and methods of making the same are also provided.
    Type: Application
    Filed: May 15, 2008
    Publication date: December 18, 2008
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Tae Hoon Kwalk, Stephen Paul Jaker, Sun-Chueh Kao, Mark Bradley Davis, Natarajan Muruganandam, Jo Ann Marie Canich
  • Patent number: 7429548
    Abstract: A This invention relates to a composition comprising a catecholate ligand, palladium or nickel, and an ancillary ligand with the following structure: where Pn is a Group-15 element; H is hydrogen; R7 and R8 are independently hydrogen or C1-C30 hydrocarbyl radicals, or both are C1-C30 hydrocarbyl radicals that form a ring structure comprising one or more aromatic or non-aromatic rings; and R13-R18 are, independently, hydrogen or C1-C30 hydrocarbyl radicals. The composition can be used to oligomerize ethylene.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: September 30, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Enock Berluche, Smita Kacker, Jo Ann Marie Canich
  • Patent number: 7294681
    Abstract: This invention relates to a polymer of one or more C3 to C40 olefins, optionally one or more diolefins, and less than 15 mole % of ethylene, and polymerization processes for producing the same.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: November 13, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peijun Jiang, Armenag Hagop Dekmezian, Jo Ann Marie Canich, Charles Lewis Sims, Ramin Abhari, Cesar Alberto Garcia-Franco, David Raymond Johnsrud
  • Patent number: 7247687
    Abstract: This invention relates to a transition metal compound represented by the formula LMX wherein M is a Group 3 to 11 metal L is a bulky bidentate or tridentate neutral ligand that is bonded to M by two or three heteroatoms and at least one heteroatom is nitrogen; X is a substituted or unsubstituted catecholate ligand provided that the substituted catecholate ligand does not contain a 1,2-diketone functionality.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: July 24, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Vladimir Kuzunich Cherkasov, Michael Paviovich Bubnov, Nikolay Olegovich Druzhkov, Valentina Nikolavena Glushakova, Irina Alexandrovna Teplova, Nina Aleksandrovna Skorodumova, Gleb Arsent′evich Abakumov, Cynthia A. Ballinger, Kevin R. Squire, Jo Ann Marie Canich, Enock Berluche, Lisa Saunders Baugh, Donald Norman Schulz, Baiyi Zhao
  • Patent number: 7223822
    Abstract: Disclosed is a process for producing branched polymers including at least 50 mol % C3–C40 olefins. The process may include: (1) feeding a first catalyst, an activator, and one or more C2–C40 olefins into a first reaction zone at a temperature of greater than 70° C. and a residence time of 120 minutes or less to produce a product; (2) feeding the product a second catalyst, and an activator into a second reaction zone at a temperature of greater than 70° C., and a residence time of 120 minutes or less. One of the catalysts should be chosen to produce a polymer having a weight average molecular weight of 100,000 or less and a crystallinity of 20% or less. The other catalyst should be chosen to producing a polymer having a weight average molecular weight of 100,000 or less and a crystallinity of 20% or more.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: May 29, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ramin Abhari, Charles Lewis Sims, Peijun Jiang, David Raymond Johnsrud, Jo Ann Marie Canich
  • Patent number: 7205364
    Abstract: The invention is a catalyst system including a Group IV B transition metal component and an alumoxane component which may be employed to polymerize olefins to produce a high molecular weight polymer.
    Type: Grant
    Filed: March 28, 1991
    Date of Patent: April 17, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Jo Ann Marie Canich
  • Patent number: 7163907
    Abstract: This invention relates to a catalyst system for the production of polyolefins comprising: (A) a Group IV B transition metal component represented by one of the two general formulae wherein (C5H5-y-xRx) is a cylopentadienyl ring (JR?z-l-y) is a heteroatom ligand in which J is an element with a coordination number of three from Group V-A or an element with a coordination number of two rom Group VI-A of the Periodic Table of Elements, each Q is independently, hydride, C1—C20 hydrocarbyl radicals, substituted hydrocarbyl radials wherein one or more hydrogen atoms is replaced by an electron withdrawing group, or C1—C20 hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the group consisting of germanium and silicon, provided that Q is not a substituted or unsubstituted cyclopentadienyl ring, or both Q together may be an alkylidene, olefin, acetylene or a cyclometallated hydrocarbyl; “y” is 0 or 1; when “y” is 1, T is a covalent bridging group containing a Group IV-A or V-A element
    Type: Grant
    Filed: June 22, 1990
    Date of Patent: January 16, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jo Ann Marie Canich, Howard William Turner, Gregory George Hlatky
  • Patent number: 7161018
    Abstract: A series of soluble ?-diimine late transition metal catalysts has been invented. The catalysts demonstrate high activity and selectivity for linear ?-olefins. As such, these catalysts conveniently oligomerize ethylene. Typical activators as known to those of ordinary skill in the art are used to activate these transition metal catalyst. These catalysts can be used in a supported or unsupported form.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: January 9, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Enock Berluche, Smita Kacker, Jo Ann Marie Canich
  • Patent number: 7160834
    Abstract: This invention relates to late transition metal catalyst precursors and catalysts for olefin dimerizations and oligomerizations, and to methods for making and using these catalysts.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: January 9, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Kevin R. Squire, Smita Kacker, Jo Ann Marie Canich
  • Patent number: 7084223
    Abstract: The invention encompasses late transition metal catalyst systems immobilized on solid supports and their use in heterogenous polymerization processes, particularly in gas phase polymerization of olefin monomers. Preferred embodiments include a late transition metal catalyst system comprising a Group 9, 10, or 11 metal complex stabilized by a bidentate ligand structure immobilized on a solid porous metal or metalloid oxide particle support, particularly those comprising silica. The gas phase polymerization process for olefin monomers comprises contacting one or more olefins with these catalyst systems under gas phase polymerization conditions.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: August 1, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: George Alan Vaughan, Jo Ann Marie Canich, Phillip T. Matsunaga, David Edward Gindelberger, Kevin Richard Squire
  • Patent number: 7067450
    Abstract: A series of soluble ?-diimine late transition metal catalysts has been invented comprising a substituted or unsubstituted catecholate ligand. The catalysts demonstrate high activity and selectivity for linear ?-olefins. As such, these catalysts conveniently oligomerize ethylene. Typical activators as known to those of ordinary skill in the art are used to activate these transition metal catalysts. These catalysts can be used in a supported or unsupported form.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: June 27, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Enock Berluche, Smita Kacker, Jo Ann Marie Canich
  • Patent number: 7041841
    Abstract: The invention is a catalytic process using a Group IV B transition metal component and an alumoxane component to polymerize ?-olefins to produce high crystallinity and high molecular weight poly-?-olefins.
    Type: Grant
    Filed: November 9, 1992
    Date of Patent: May 9, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Jo Ann Marie Canich
  • Patent number: 7037989
    Abstract: Substantially random ethylene and/or ?-olefin copolymers containing units derived from vicinally disubstituted olefin monomers are described. The vicinally disubstituted olefin monomers may be represented by the generic formula (R1)CH?CH(R2), where R1 and R2 independently comprise hydrocarbyl or silyl-hydrocarbyl groups containing 1 or more carbon atoms, or may be linear, branched or cyclic substituted or unsubstituted hydrocarbyl groups having from 1-100 carbon atoms, or they may contain 30 or less carbon atoms. The copolymers may be prepared by coordination polymerization by means of contacting at least one vicinally disubstituted olefin monomer and ethylene and/or ?-olefin, optionally with one or more other coordination polymerizable monomers, with a catalyst system comprising a monocyclopentadienyl heteroatom-containing Group 4 transition metal catalyst component.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: May 2, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Smita Kacker, Enock Berluche, Timothy Daniel Shaffer, Jo Ann Marie Canich
  • Publication number: 20040249046
    Abstract: Embodiments of the present invention relate to article comprising 1) a functionalized component, 2) tackifier, and 3) an olefin polymer comprising one or more C3 to C40 olefins, optionally one or more diolefins, and less than 5 mole % of ethylene having a Dot T-Peel of 1 Newton or more, a branching index (g′) of 0.95 or less measured at the Mz of the polymer; and an Mw of 100,000 or less; where the functional component is selcted from the group consisting of functionalized polymers, functionalized oligomers and beta nucleating agents; and where the Gardner color of the adheisve does not change by more than 7 Gardner units when the adhesive has been heat aged at 180° C. for 48 hours as compared to the Gardner color of the unaged composition.
    Type: Application
    Filed: April 15, 2004
    Publication date: December 9, 2004
    Inventors: Ramin Abhari, Charles Lewis Sims, Kenneth Lewtas, Mun Fu Tse, Patrick Brant, Peijun Jiang, Wai Yan Chow, Jean-Roch Schauder, Caiguo Gong, David Raymond Johnsrud, Jo Ann Marie Canich
  • Publication number: 20040242814
    Abstract: Substantially random ethylene and/or &agr;-olefin copolymers containing units derived from vicinally disubstituted olefin monomers are described. The vicinally disubstituted olefin monomers may be represented by the generic formula (R1)CH═CH(R2), where R1 and R2 independently comprise hydrocarbyl or silyl-hydrocarbyl groups containing 1 or more carbon atoms, or may be linear, branched or cyclic substituted or unsubstituted hydrocarbyl groups having from 1-100 carbon atoms, or they may contain 30 or less carbon atoms,. The copolymers may be prepared by coordination polymerization by means of contacting at least one vicinally disubstituted olefin monomer and ethylene and/or &agr;-olefin, optionally with one or more other coordination polymerizable monomers, with a catalyst system comprising a monocyclopentadienyl heteroatom-containing Group 4 transition metal catalyst component.
    Type: Application
    Filed: May 27, 2003
    Publication date: December 2, 2004
    Inventors: Smita Kacker, Enock Berluche, Timothy Daniel Shaffer, Jo Ann Marie Canich
  • Publication number: 20040220359
    Abstract: This invention relates to a continuous process to produce a branched olefin polymer comprising:
    Type: Application
    Filed: April 15, 2004
    Publication date: November 4, 2004
    Inventors: Ramin Abhari, Charles Lewis Sims, Peijun Jiang, David Raymond Johnsrud, Jo Ann Marie Canich
  • Patent number: 6812184
    Abstract: A late transition metal catalyst system for polymerization of olefin monomers is a Group 9, 10 or 11 metal complex stabilized by a bidentate ligand immobilized on a solid support where the late transition metal loading is less than 100 micromoles transition metal compound per gram of solid support. The bidentate ligand has the formula: wherein A is a bridging group containing a Group 13-15 element; each E is independently a Group 15 or 16 element bonded to M; each R is independently a C1-C30 containing radical or diradical group which is a hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, hydrocarbyl-substituted organometalloid, halocarbyl-substituted organometalloid, m and n are independently 1 or 2 depending on the valency of E; and p is the charge on the bidentate ligand.
    Type: Grant
    Filed: June 17, 1997
    Date of Patent: November 2, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: George Alan Vaughan, Jo Ann Marie Canich, Phillip T. Matsunaga, David Edward Gindelberger, Kevin Richard Squire
  • Publication number: 20040210014
    Abstract: The invention encompasses late transition metal catalyst systems immobilized on solid supports and their use in heterogenous polymerization processes, particularly in gas phase polymerization of olefin monomers. Preferred embodiments include a late transition metal catalyst system comprising a Group 9, 10, or 11 metal complex stabilized by a bidentate ligand structure immobilized on a solid porous metal or metalloid oxide particle support, particularly those comprising silica. The gas phase polymerization process for olefin monomers comprises contacting one or more olefins with these catalyst systems under gas phase polymerization conditions.
    Type: Application
    Filed: May 4, 2004
    Publication date: October 21, 2004
    Inventors: George Alan Vaughan, Jo Ann Marie Canich, Phillip T. Matsunaga, David Edward Gindelberger, Kevin Richard Squire