Patents by Inventor Jo-Chun Hung

Jo-Chun Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230411216
    Abstract: A method includes providing a substrate, a dummy fin, and a stack of semiconductor channel layers; forming an interfacial layer wrapping around each of the semiconductor channel layers; depositing a high-k dielectric layer, wherein a first portion of the high-k dielectric layer over the interfacial layer is spaced away from a second portion of the high-k dielectric layer on sidewalls of the dummy fin by a first distance; depositing a first dielectric layer over the dummy fin and over the semiconductor channel layers, wherein a merge-critical-dimension of the first dielectric layer is greater than the first distance thereby causing the first dielectric layer to be deposited in a space between the dummy fin and a topmost layer of the stack of semiconductor channel layers, thereby providing air gaps between adjacent layers of the stack of semiconductor channel layers and between the dummy fin and the stack of semiconductor channel layers.
    Type: Application
    Filed: July 31, 2023
    Publication date: December 21, 2023
    Inventors: Chia-Hao Pao, Chih-Chuan Yang, Shih-Hao Lin, Kian-Long Lim, Chih-Wei Lee, Chien-Yuan Chen, Jo-Chun Hung, Yung-Hsiang Chan, Yu-Kuan Lin, Lien-Jung Hung
  • Publication number: 20230395435
    Abstract: A method includes providing a structure having a first stack of nanostructures spaced vertically one from another and a second stack of nanostructures spaced vertically one from another, forming a dielectric layer wrapping around each of the nanostructures in the first and second stacks, depositing an n-type work function layer on the dielectric layer and a p-type work function layer on the n-type work function layer and over the first and second stacks. The n-type work function layer wraps around each of the nanostructures in the first stack. The p-type work function layer wraps around each of the nanostructures in the second stack. The method also includes forming an electrode layer on the p-type work function layer and over the first and second stacks.
    Type: Application
    Filed: June 5, 2022
    Publication date: December 7, 2023
    Inventors: Chih-Wei Lee, Jo-Chun Hung, Wen-Hung Huang, Jian-Hao Chen, Kuo-Feng Yu
  • Publication number: 20230395598
    Abstract: A sacrificial layer is formed over a first channel structure of an N-type transistor (NFET) and over a second channel structure of a P-type transistor (PFET). A PFET patterning process is performed at least in part by etching away the sacrificial layer in the PFET while protecting the NFET from being etched. After the PFET patterning process has been performed, a P-type work function (WF) metal layer is deposited in both the NFET and the PFET. An NFET patterning process is performed at least in part by etching away the P-type WF metal layer and the sacrificial layer in the NFET while protecting the PFET from being etched. After the NFET patterning process has been performed, an N-type WF metal layer is deposited in both the NFET and the PFET.
    Type: Application
    Filed: June 4, 2022
    Publication date: December 7, 2023
    Inventors: Jo-Chun Hung, Chih-Wei Lee, Wen-Hung Huang, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Hsin-Han Tsai, Yin-Chuan Chuang, Yu-Ling Cheng, Yu-Xuan Wang, Tefu Yeh
  • Publication number: 20230343834
    Abstract: Ruthenium of a metal gate (MG) and/or a middle end of line (MEOL) structure is annealed to reduce, or even eliminate, seams after the ruthenium is deposited. Because the annealing reduces (or removes) seams in deposited ruthenium, electrical performance is increased because resistivity of the MG and/or the MEOL structure is decreased. Additionally, for MGs, the annealing generates a more even deposition profile, which results in a timed etching process producing a uniform gate height. As a result, more of the MGs will be functional after etching, which increases yield during production of the electronic device.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 26, 2023
    Inventors: Hsin-Han TSAI, Hsiang-Ju LIAO, Yi-Lun LI, Cheng-Lung HUNG, Weng CHANG, Chi On CHUI, Jo-Chun HUNG, Chih-Wei LEE, Chia-Wei CHEN
  • Patent number: 11791214
    Abstract: A method includes providing a substrate, a dummy fin, and a stack of semiconductor channel layers; forming an interfacial layer wrapping around each of the semiconductor channel layers; depositing a high-k dielectric layer, wherein a first portion of the high-k dielectric layer over the interfacial layer is spaced away from a second portion of the high-k dielectric layer on sidewalls of the dummy fin by a first distance; depositing a first dielectric layer over the dummy fin and over the semiconductor channel layers, wherein a merge-critical-dimension of the first dielectric layer is greater than the first distance thereby causing the first dielectric layer to be deposited in a space between the dummy fin and a topmost layer of the stack of semiconductor channel layers, thereby providing air gaps between adjacent layers of the stack of semiconductor channel layers and between the dummy fin and the stack of semiconductor channel layers.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Hao Pao, Chih-Chuan Yang, Shih-Hao Lin, Kian-Long Lim, Chih-Wei Lee, Chien-Yuan Chen, Jo-Chun Hung, Yung-Hsiang Chan, Yu-Kuan Lin, Lien Jung Hung
  • Publication number: 20230290824
    Abstract: A method for forming a semiconductor device structure includes forming first nanostructures and second nanostructures over a substrate. The method also includes forming a first metal gate layer surrounding the first nanostructures and over the first nanostructures and the second nanostructures. The method also includes etching back the first metal gate layer over the first nanostructures and the second nanostructures. The method also includes removing the first metal gate layer over the second nanostructures. The method also includes forming a second metal gate layer surrounding the second nanostructures and over the first nanostructures and the second nanostructures.
    Type: Application
    Filed: March 10, 2022
    Publication date: September 14, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Yao YANG, Chia-Wei CHEN, Wei-Cheng HSU, Jo-Chun HUNG, Yung-Hsiang CHAN, Hui-Chi CHEN, Yen-Ta LIN, Te-Fu YEH, Yun-Chen WU, Yen-Ju CHEN, Chih-Ming SUN
  • Publication number: 20230282699
    Abstract: A semiconductor device structure and a manufacturing method thereof are provided. The structure includes a substrate having a first region and a second region, first and second semiconductor channel sheets, first and second gate structure and source and drain regions. The first and second semiconductor channel sheets are disposed over the substrate and respectively in the first region and the second region. The first semiconductor channel sheets have a first channel width shorter than a second channel width of the second semiconductor channel sheets. The first and second gate structures are disposed over and laterally surrounding the first and second semiconductor channel sheets respectively. The first gate structure includes a first gate dielectric layer and a first metallic layer. The second gate structure includes a second gate dielectric layer and a second metallic layer. The source and drain regions are located beside the first and second semiconductor channel sheets.
    Type: Application
    Filed: March 1, 2022
    Publication date: September 7, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tefu Yeh, Ming-Chi Huang, Jo-Chun Hung, Ying-Liang Chuang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Publication number: 20230268409
    Abstract: A semiconductor device structure and a formation method are provided. The method includes forming a fin structure over a substrate, and the fin structure has multiple sacrificial layers and multiple semiconductor layers laid out alternately. The method also includes removing the sacrificial layers to release multiple semiconductor nanostructures made up of remaining portions of the semiconductor lavers. The method further includes forming a gate dielectric layer to wrap around the semiconductor nanostructures and forming a first metal-containing layer over the gate dielectric layer to wrap around the semiconductor nanostructures. In addition, the method includes introducing oxygen-containing plasma on the first metal-containing layer to transform an upper portion of the first metal-containing layer into a metal oxide layer. The method includes forming a second metal-containing layer over the metal oxide layer.
    Type: Application
    Filed: February 22, 2022
    Publication date: August 24, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Wei CHEN, Jo-Chun HUNG, Chih-Wei LEE, Hui-Chi CHEN, Hsin-Han TSAI, Hsiang-Ju LIAO, Yi-Lun LI, Cheng-Lung HUNG, Chi On CHUI
  • Publication number: 20230140968
    Abstract: Semiconductor devices having improved gate electrode structures and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a gate structure over a semiconductor substrate, the gate structure including a high-k dielectric layer; an n-type work function layer over the high-k dielectric layer; an anti-reaction layer over the n-type work function layer, the anti-reaction layer including a dielectric material; a p-type work function layer over the anti-reaction layer, the p-type work function layer covering top surfaces of the anti-reaction layer; and a conductive cap layer over the p-type work function layer.
    Type: Application
    Filed: January 13, 2023
    Publication date: May 11, 2023
    Inventors: Shih-Hang Chiu, Chung-Chiang Wu, Jo-Chun Hung, Wei-Cheng Wang, Kuan-Ting Liu, Chi On Chui
  • Publication number: 20230065195
    Abstract: An n-type field effect transistor includes semiconductor channel members vertically stacked over a substrate, a gate dielectric layer wrapping around each of the semiconductor channel members, and a work function layer disposed over the gate dielectric layer. The work function layer wraps around each of the semiconductor channel members. The n-type field effect transistor also includes a WF isolation layer disposed over the WF layer and a gate metal fill layer disposed over the WF isolation layer. The WF isolation layer fills gaps between adjacent semiconductor channel members.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Jo-Chun Hung, Chih-Wei Lee, Wen-Hung Huang, Kuo-Feng Yu
  • Patent number: 11594610
    Abstract: Semiconductor devices having improved gate electrode structures and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a gate structure over a semiconductor substrate, the gate structure including a high-k dielectric layer; an n-type work function layer over the high-k dielectric layer; an anti-reaction layer over the n-type work function layer, the anti-reaction layer including a dielectric material; a p-type work function layer over the anti-reaction layer, the p-type work function layer covering top surfaces of the anti-reaction layer; and a conductive cap layer over the p-type work function layer.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Hang Chiu, Chung-Chiang Wu, Jo-Chun Hung, Wei-Cheng Wang, Kuan-Ting Liu, Chi On Chui
  • Publication number: 20220367656
    Abstract: A method includes providing a substrate, a dummy fin, and a stack of semiconductor channel layers; forming an interfacial layer wrapping around each of the semiconductor channel layers; depositing a high-k dielectric layer, wherein a first portion of the high-k dielectric layer over the interfacial layer is spaced away from a second portion of the high-k dielectric layer on sidewalls of the dummy fin by a first distance; depositing a first dielectric layer over the dummy fin and over the semiconductor channel layers, wherein a merge-critical-dimension of the first dielectric layer is greater than the first distance thereby causing the first dielectric layer to be deposited in a space between the dummy fin and a topmost layer of the stack of semiconductor channel layers, thereby providing air gaps between adjacent layers of the stack of semiconductor channel layers and between the dummy fin and the stack of semiconductor channel layers.
    Type: Application
    Filed: July 28, 2021
    Publication date: November 17, 2022
    Inventors: Chia-Hao Pao, Chih-Chuan Yang, Shih-Hao Lin, Kian-Long Lim, Chih-Wei Lee, Chien-Yuan Chen, Jo-Chun Hung, Yung-Hsiang Chan, Yu-Kuan Lin, Lien Jung Hung
  • Publication number: 20220123124
    Abstract: Semiconductor devices having improved gate electrode structures and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a gate structure over a semiconductor substrate, the gate structure including a high-k dielectric layer; an n-type work function layer over the high-k dielectric layer; an anti-reaction layer over the n-type work function layer, the anti-reaction layer including a dielectric material; a p-type work function layer over the anti-reaction layer, the p-type work function layer covering top surfaces of the anti-reaction layer; and a conductive cap layer over the p-type work function layer.
    Type: Application
    Filed: February 2, 2021
    Publication date: April 21, 2022
    Inventors: Shih-Hang Chiu, Chung-Chiang Wu, Jo-Chun Hung, Wei-Cheng Wang, Kuan-Ting Liu, Chi On Chui