Patents by Inventor Joël Larose

Joël Larose has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230399722
    Abstract: An article has a nickel-based alloy substrate having, in weight percent: 5.4-7.4 Re; 4.1-5.9 Ru; 3.0-6.2 Cr; 3.0-10.0 Co; 0.5-3.8 Mo; 3.0-6.0 W; 4.6-8.6 Ta; 5.0-6.4 Al; 0.050-0.30 Hf; no more than 0.50 all other elements, if any, individually; and no more than 2.0 all other elements, if any, combined. A nickel-based coating is on the substrate and comprising, in weight percent: 6.0-10.0 Al; 4.0-15.0 Cr; 11.0-15.0 Co; 0.1-1.0 Hf; 0.1-1.0 Si; 0.1-1.0 Y; up to 1.0 Zr if any; up to 7.0 Ta if any; up to 6.0 W if any; no more than 1.0 all other elements, if any, individually; and no more than 4.0 all other elements, if any, combined.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 14, 2023
    Applicant: Pratt & Whitney Canada Corp.
    Inventor: Joël Larose
  • Patent number: 11802330
    Abstract: A formation method is provided. During this formation method, a metallic substrate is provided. A coating is deposited onto the metallic substrate using a suspension plasma spray process. The coating is formed from or otherwise includes copper oxide.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: October 31, 2023
    Assignees: The Royal Institution for the Advancement of Learning/McGill Concordia University, Concordia University, Pratt & Whitney Canada Corp.
    Inventors: Joël Larose, Amit Roy, Navid Sharifi, Pantcho Stoyanov, Christian Moreau, Richard Chromik, Mary Makowiec
  • Publication number: 20230046594
    Abstract: A coating-substrate combination includes: a Ni-based superalloy substrate comprising, by weight percent: 2.0-5.1 Cr; 0.9-3.3 Mo; 3.9-9.8 W; 2.2-6.8 Ta; 5.4-6.5 Al; 1.8-12.8 Co; 2.8-5.8 Re; 2.8-7.2 Ru; and a coating comprising, exclusive of Pt group elements, by weight percent: Ni as a largest content; 5.8-9.3 Al; 4.4-25 Cr; 3.0-13.5 Co; up to 6.0 Ta, if any; up to 6.2 W, if any; up to 2.4 Mo, if any; 0.3-0.6 Hf; 0.1-0.4 Si; up to 0.6 Y, if any; up to 0.4 Zr, if any; up to 1.0 Re, if any.
    Type: Application
    Filed: November 1, 2022
    Publication date: February 16, 2023
    Applicant: Pratt & Whitney Canada Corp.
    Inventors: Joel Larose, Alan D. Cetel, David A. Litton, Brian S. Tryon
  • Patent number: 11518143
    Abstract: A coating-substrate combination includes: a Ni-based superalloy substrate comprising, by weight percent: 2.0-5.1 Cr; 0.9-3.3 Mo; 3.9-9.8 W; 2.2-6.8 Ta; 5.4-6.5 Al; 1.8-12.8 Co; 2.8-5.8 Re; 2.8-7.2 Ru; and a coating comprising, exclusive of Pt group elements, by weight percent: Ni as a largest content; 5.8-9.3 Al; 4.4-25 Cr; 3.0-13.5 Co; up to 6.0 Ta, if any; up to 6.2 W, if any; up to 2.4 Mo, if any; 0.3-0.6 Hf; 0.1-0.4 Si; up to 0.6 Y, if any; up to 0.4 Zr, if any; up to 1.0 Re, if any.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: December 6, 2022
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Joel Larose, Alan D. Cetel, David A. Litton, Brian S. Tryon
  • Publication number: 20210010378
    Abstract: An article has a cavity defined by an inner surface, the cavity having a size such that a largest sphere placeable in the cavity has a diameter of less than 7 cm and a smallest sphere placeable in the cavity has a diameter of 0.5 mm; and a hard coating on the inner surface, the hard coating having a hardness between 18 to 100 GPa, the hard coating distributed on the inner surface such that a ratio of a coating thickness at a first region of the hard coating to that at a second region of the hard coating ranges from 0.75 to 1.33.
    Type: Application
    Filed: June 11, 2020
    Publication date: January 14, 2021
    Inventors: Thomas SCHMITT, Oleg ZABEIDA, Joel LAROSE, Etienne BOUSSER, Elvi DALGAARD
  • Publication number: 20210001603
    Abstract: A coating-substrate combination includes: a Ni-based superalloy substrate comprising, by weight percent: 2.0-5.1 Cr; 0.9-3.3 Mo; 3.9-9.8 W; 2.2-6.8 Ta; 5.4-6.5 Al; 1.8-12.8 Co; 2.8-5.8 Re; 2.8-7.2 Ru; and a coating comprising, exclusive of Pt group elements, by weight percent: Ni as a largest content; 5.8-9.3 Al; 4.4-25 Cr; 3.0-13.5 Co; up to 6.0 Ta, if any; up to 6.2 W, if any; up to 2.4 Mo, if any; 0.3-0.6 Hf; 0.1-0.4 Si; up to 0.6 Y, if any; up to 0.4 Zr, if any; up to 1.0 Re, if any.
    Type: Application
    Filed: September 23, 2020
    Publication date: January 7, 2021
    Applicant: Pratt & Whitney Canada Corp.
    Inventors: Joel Larose, Alan D. Cetel, David A. Litton, Brian S. Tryon
  • Publication number: 20190070830
    Abstract: A coating-substrate combination includes: a Ni-based superalloy substrate comprising, by weight percent: 2.0-5.1 Cr; 0.9-3.3 Mo; 3.9-9.8 W; 2.2-6.8 Ta; 5.4-6.5 Al; 1.8-12.8 Co; 2.8-5.8 Re; 2.8-7.2 Ru; and a coating comprising, exclusive of Pt group elements, by weight percent: Ni as a largest content; 5.8-9.3 Al; 4.4-25 Cr; 3.0-13.5 Co; up to 6.0 Ta, if any; up to 6.2 W, if any; up to 2.4 Mo, if any; 0.3-0.6 Hf; 0.1-0.4 Si; up to 0.6 Y, if any; up to 0.4 Zr, if any; up to 1.0 Re, if any.
    Type: Application
    Filed: November 1, 2018
    Publication date: March 7, 2019
    Applicant: Pratt & Whitney Canada Corp.
    Inventors: Joel Larose, Alan D. Cetel, David A. Litton, Brian S. Tryon
  • Publication number: 20160333455
    Abstract: A thermal barrier coating includes a microstructure and a composition including: a ceramic based compound comprising gadolinia and zirconia. The coating includes a nano-structure having a porosity of at most 50% by volume of the coating.
    Type: Application
    Filed: July 29, 2016
    Publication date: November 17, 2016
    Applicant: Pratt & Whitney Canada Corp.
    Inventor: Joel Larose
  • Publication number: 20160214350
    Abstract: A coating-substrate combination includes: a Ni-based superalloy substrate comprising, by weight percent: 2.0-5.1 Cr; 0.9-3.3 Mo; 3.9-9.8 W; 2.2-6.8 Ta; 5.4-6.5 Al; 1.8-12.8 Co; 2.8-5.8 Re; 2.8-7.2 Ru; and a coating comprising, exclusive of Pt group elements, by weight percent: Ni as a largest content 5.8-9.3 Al; 4.4-25 Cr; 3.0-13.5 Co; up to 6.0 Ta, if any; up to 6.2 W, if any; up to 2.4 Mo, if any; 0.3-0.6 Hf; 0.1-0.4 Si; up to 0.6 Y, if any; up to 0.4 Zr, if any; up to 1.0 Re, if any.
    Type: Application
    Filed: August 19, 2013
    Publication date: July 28, 2016
    Applicant: PRATT & WHITNEY CANADA CORP.
    Inventors: Joel Larose, Alan D. Cetel, David A. Litton, Brian S. Tryon
  • Publication number: 20140017477
    Abstract: A thermal barrier coating includes a microstructure and a composition including: a ceramic based compound comprising gadolinia and zirconia. The coating includes a nano-structure having a porosity of at most 50% by volume of the coating.
    Type: Application
    Filed: September 17, 2013
    Publication date: January 16, 2014
    Applicant: Pratt & Whitney Canada Corp.
    Inventor: Joel Larose
  • Patent number: 8267663
    Abstract: A gas turbine engine airfoil is made from separate cast sections having different cast alloy structures. The cast alloy structures are selected on the basis of the local operating conditions of each section. Friction welding can be used to join the sections together.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: September 18, 2012
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Joël Larose, Ghislain Plante
  • Publication number: 20100227146
    Abstract: A thermal barrier coating includes a microstructure and an composition including: at least one ceramic based compound comprising at least one oxide of a material selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, indium, scandium, yttrium, zirconium, hafnium, titanium, and combinations thereof. The coating includes a nano-structure having a porosity of at most 50% by volume of the coating, and the coating comprises nano-structured inclusions.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 9, 2010
    Inventor: Joel LAROSE
  • Publication number: 20090269193
    Abstract: A gas turbine engine airfoil is made from separate cast sections having different cast alloy structures. The cast alloy structures are selected on the basis of the local operating conditions of each section. Friction welding can be used to join the sections together.
    Type: Application
    Filed: April 28, 2008
    Publication date: October 29, 2009
    Inventors: Joel LAROSE, Ghislain PLANTE