Patents by Inventor Joachim Roesler

Joachim Roesler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240011128
    Abstract: A nickel-base alloy composition includes nickel as the main constituent and the further constituents in percent by weight (% by weight): 0.04 to 0.10% carbon (C), 8 to 13% tantalum (Ta), 12 to 20% chromium (Cr), 3 to 25% cobalt (Co), less than 0.03% manganese (Mn), less than 0.06% silicon (Si), 0 to 6% molybdenum (Mo), less than 5.0% iron (Fe), 2 to 4% aluminum (Al), less than 0.01% magnesium (Mg), less than 0.02% vanadium (V), 0 to 6% tungsten (W), less than 1% titanium (Ti), less than 0.03% yttrium (Y), 0.005 to 0.015% boron (B), less than 0.003% sulfur (S), 0.005 to 0.04% zirconium (Zr) and less than 3% hafnium. Additionally provided are an additive manufacturing method, a method of additively manufacturing a component part from a powder of the alloy composition provided, a corresponding intermediate alloy, and a component part consisting of the nickel-base superalloy.
    Type: Application
    Filed: September 22, 2023
    Publication date: January 11, 2024
    Inventors: Kai Dörries, Joachim Rösler, Christoph Haberland, Juri Burow, Bodo Gehrmann, Sebastian Piegert
  • Publication number: 20190040501
    Abstract: A Ni—Co alloy includes 30 to 65 wt % Ni, >0 to max. 10 wt % Fe, >12 to <35 wt % Co, 13 to 23 wt % Cr, 1 to 6 wt % Mo, 4 to 6 wt % Nb+Ta, >0 to <3 wt % Al, >0 to <2 wt % Ti, >0 to max. 0.1 wt % C, >0 to max. 0.03 wt % P, >0 to max. 0.01 wt % Mg, >0 to max. 0.02 wt % B, >0 to max. 0.1 wt % Zr, which fulfils the following requirements and criteria: a) 900° C.<?? solvus temperature<1030° C. with 3 at %<Al+Ti (at %)<5.6 at % and 11.5 at %<Co<35 at %; b) stable microstructure after 500 h of ageing annealing at 800° C. with a ratio Al/Ti>5 (on the basis of the contents in at %).
    Type: Application
    Filed: October 1, 2018
    Publication date: February 7, 2019
    Applicant: VDM Metals International GmbH
    Inventors: Budo GEHRMANN, Jutta KLOEWER, Tatiana FEDOROVA, Joachim ROESLER
  • Publication number: 20150354031
    Abstract: A Ni—Co alloy includes 30 to 65 wt % Ni, >0 to max. 10 wt % Fe, >12 to <35 wt % Co, 13 to 23 wt % Cr, 1 to 6 wt % Mo, 4 to 6 wt % Nb+Ta, >0 to <3 wt % Al, >0 to <2 wt % Ti, >0 to max. 0.1 wt % C, >0 to max. 0.03 wt % P, >0 to max. 0.01 wt % Mg, >0 to max. 0.02 wt % B, >0 to max. 0.1 wt % Zr, which fulfils the following requirements and criteria: a) 900° C.<?? solvus temperature<1030° C. with 3 at %<Al+Ti (at %)<5.6 at % and 11.5 at %<Co<35 at %; b) stable microstructure after 500 h of ageing annealing at 800° C. with a ratio Al/Ti>5 (on the basis of the contents in at %).
    Type: Application
    Filed: February 13, 2014
    Publication date: December 10, 2015
    Applicant: VDM Metals GmbH
    Inventors: Budo GEHRMANN, Jutta KLOEWER, Tatiana FEDOROVA, Joachim ROESLER
  • Patent number: 8555500
    Abstract: A method of producing or repairing single-crystalline turbine or engine components by the following steps: heating of braze filler metal to a temperature which is greater than or equal to the melting temperature of the braze filler metal; introducing the molten mass of the braze filler metal produced through the heating process into a crack formed in the turbine or engine component, or into the gap formed between two turbine or engine components, or into a damaged area of a turbine or engine component; and non-isothermal control or regulation of the temperature of the braze filler metal or turbine or engine component during an epitaxic solidification process of the braze filler metal.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: October 15, 2013
    Assignee: MTU Aero Engines GmbH
    Inventors: Andreas Vossberg, Hans Joachim Rösler, Sebastian Piegert
  • Publication number: 20110044841
    Abstract: A method is provided for producing microscopically small components. The method can produce components with a size of less than 10 ?m. The method includes: (a) Production of a precipitation hardenable alloy comprising at least two phases, in which alloy of a first phase forms a matrix structure in which a second phase is embedded in the form of discrete particles of a size less than 10 ?m; (b) Dissolution of the matrix and separation of particles from the alloy; and (c) Mechanical deformation by forging respectively a separated particle with at least one striking tool to form the desired element.
    Type: Application
    Filed: October 28, 2006
    Publication date: February 24, 2011
    Applicant: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG CAROLO- wILHELMINA
    Inventors: Joachim Roesler, Debashis Mukherji
  • Publication number: 20070175546
    Abstract: A solder alloy and a multi-component soldering system, to the use of the same, and to a method for repairing gas turbine components are described herein. The solder alloy based on nickel includes the following elements: nickel (Ni), chromium (Cr), cobalt (Co), molybdenum (Mo), aluminum (Al), tantalum (Ta), niobium (Nb), yttrium (Y), hafnium (Hf), palladium (Pd), boron (B) and silicon (Si). The multi-component soldering system includes the solder alloy and additionally at least one additive material. The additive materials include the following elements: nickel (Ni), chromium (Cr), cobalt (Co), molybdenum (Mo), aluminum (Al), tantalum (Ta), titanium (Ti), rhenium (Re), iron (Fe), niobium (Nb), yttrium (Y), hafnium (Hf), palladium (Pd), carbon (C), zirconium (Zr), boron (B) and silicon (Si).
    Type: Application
    Filed: November 13, 2004
    Publication date: August 2, 2007
    Applicant: MTU Aero Engines GMBH
    Inventors: Barbara Hoppe, Debashis Mukherji, Joachim Roesler, Andreas Vossberg
  • Patent number: 7074284
    Abstract: In a heat treatment process for a single-crystal or directionally solidified material body comprising a nickel-based superalloy, the material body is solution-annealed and then at a first temperature ?? particles of greater than 1 ?m are precipitated in a proportion by volume with Vtot?V1 of less than 50%, where Vtot is the total amount of ?? particles after complete heat treatment and V1 is the proportion of the ?? particles which is greater than 1 ?m, and at least at a second temperature ‘?’ particles of less than 1 ?m are precipitated. The ?? particles are preferably precipitated in a size of 2 pin or more with a proportion by volume of 0.25<(Vtot?V1)/(100?V1)<0.55 at the first temperature. The proportion by volume Vtot of the ?? particles will be at least 50%.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: July 11, 2006
    Assignee: ALSTOM Technology LTD
    Inventors: Mohamed Nazmy, Joachim Roesler, Alexander Schnell, Christoph Toennes
  • Patent number: 7063740
    Abstract: It is disclosed a method for strengthen the grain boundaries of an article (1) made from a Ni based superalloy while the article (1) is in the solid state and containing at least one grain boundary. A surface diffusion process is applied to the article (1) to enrich the at least one grain boundary with grain boundary strengthening elements of one or a combination of boron, hafnium, zirconium without forming brittle precipitates like borides or carbides.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: June 20, 2006
    Assignee: ALSTOM Technology Ltd
    Inventors: Steffen Müller, Joachim Rösler
  • Publication number: 20050061228
    Abstract: It is disclosed a method for strengthen the grain boundaries of an article (1) made from a Ni based superalloy while the article (1) is in the solid state and containing at least one grain boundary. A surface diffusion process is applied to the article (1) to enrich the at least one grain boundary with grain boundary strengthening elements of one or a combination of boron, hafnium, zirconium without forming brittle precipitates like borides or carbides.
    Type: Application
    Filed: February 13, 2004
    Publication date: March 24, 2005
    Applicant: ALSTOM Technology Ltd.
    Inventors: Steffen Muller, Joachim Roesler
  • Publication number: 20040050460
    Abstract: In a heat treatment process for a single-crystal or directionally solidified material body comprising a nickel-based superalloy, the material body is solution-annealed and then at a first temperature &ggr;′ particles of greater than 1 &mgr;m are precipitated in a proportion by volume with Vtot−V1 of less than 50%, where Vtot is the total amount of &ggr;′ particles after complete heat treatment and V1 is the proportion of the &ggr;′ particles which is greater than 1 &mgr;m, and at least at a second temperature ‘&ggr;’ particles of less than 1 &mgr;m are precipitated. The &ggr;′ particles are preferably precipitated in a size of 2 pin or more with a proportion by volume of 0.25<(Vtot−V1)/(100−V1)<0.55 at the first temperature. The proportion by volume Vtot of the &ggr;′ particles will be at least 50%.
    Type: Application
    Filed: July 11, 2003
    Publication date: March 18, 2004
    Inventors: Mohamed Nazmy, Joachim Roesler, Alexander Schnell, Christoph Toennes
  • Patent number: 6412541
    Abstract: A thermally highly loaded casting is produced. The casting mold is produced from a slurry using a wax model and a polymer foam which is fixed to the wax model or has been introduced into a cavity. In this way, during the casting process the liquid superalloy also penetrates into the open-cell structure of the casting mold, so that an integral cooling structure is formed during the solidification of the casting. A single-crystal or directionally solidified casting is advantageously produced. It is also conceivable to vary the cell size of the polymer foam, to produce a cooling structure and a base material separately, and to coat the cooling structure with a ceramic protective layer (thermal barrier coating).
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: July 2, 2002
    Assignee: Alstom Power N.V.
    Inventors: Hans-Joachim Roesler, Alexander Beeck, Peter Ernst, Reinhard Fried
  • Publication number: 20010042607
    Abstract: To produce a thermally highly loaded casting (1, 14, 16, 17) of a thermal turbomachine which is produced using a known casting process, the casting mold is produced from a slurry using a wax model and a polymer foam which is fixed to the wax model or has been introduced into a cavity. In this way, during the casting process the liquid superalloy also penetrates into the open-cell structure of the casting mold, so that an integral cooling structure (7) is formed during the solidification of the casting (1, 14, 16, 17). A single-crystal or directionally solidified casting (1, 14, 16, 17) is advantageously produced. It is also conceivable to vary the cell size of the polymer foam, to produce cooling structure (7) and base material separately and to coat the cooling structure (7) with a ceramic protective layer (thermal barrier coating) (11).
    Type: Application
    Filed: April 18, 2001
    Publication date: November 22, 2001
    Inventors: Hans-Joachim Roesler, Alexander Beeck, Peter Ernst, Reinhard Fried