Patents by Inventor Joachim Sallvin

Joachim Sallvin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230078384
    Abstract: A method for a thawing device configured to thaw/heat a blood product comprised in a container, the method comprising the steps of performing a massaging motion, by a first actuator, on one or more areas of an outer surface of the container, obtaining measurements, from a reflectance sensor coupled to an antenna, the measurements at least being indicative of phase of received radio frequency, RF, waves having a second frequency and being reflected off the container, determining a third frequency, wherein the third frequency is determined by a predetermined relation dependent on the second frequency and the obtained measurements, controlling a transmitter, communicatively coupled to the antenna, to emit RF waves, using the obtained measurements, wherein the emitted RF waves are emitted at a third frequency and are directed by the antenna to propagate towards the container, wherein the third frequency is in the range of 10 to 900 MHz.
    Type: Application
    Filed: January 20, 2021
    Publication date: March 16, 2023
    Inventors: Mattias TULLBERG, Joachim SÄLLVIN, Andreas SVENSSON, Sven SUNDIN
  • Patent number: 10798788
    Abstract: A heater (100) for thawing/warming a perishable dielectric load (130) contains: a heating chamber (140) for holding the perishable dielectric load (130) during thawing/warming thereof, a transmitter unit (110) generating electromagnetic energy (RFs) having predefined spectral properties, an emitting element (150) producing an electromagnetic field in the perishable dielectric load (130) based on the electromagnetic energy (RFs) from the transmitter unit (110), a tuning circuit (115) adjusting an overall impedance (Z) of the emitting element (150), the tuning circuit (115) and the heating chamber (140) so that the overall impedance (Z) matches an output impedance of the transmitter unit (110), and a control unit (120) measuring the overall impedance (Z) during thawing/warming of the perishable dielectric load (130) and repeatedly generating at least one control signal (Tn) causing the tuning circuit (115) to adjust the overall impedance (Z) to match the output impedance of the transmitter unit (110).
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: October 6, 2020
    Assignee: Antrad Medical AB
    Inventors: Pierre Westin, Joachim Sällvin, Anders Björkman
  • Publication number: 20190014624
    Abstract: A heater (100) for thawing/warming a perishable dielectric load (130) contains: a heating chamber (140) for holding the perishable dielectric load (130) during thawing/warming thereof, a transmitter unit (110) generating electromagnetic energy (RFs) having predefined spectral properties, an emitting element (150) producing an electromagnetic field in the perishable dielectric load (130) based on the electromagnetic energy (RFs) from the transmitter unit (110), a tuning circuit (115) adjusting an overall impedance (Z) of the emitting element (150), the tuning circuit (115) and the heating chamber (140) so that the overall impedance (Z) matches an output impedance of the transmitter unit (110), and a control unit (120) measuring the overall impedance (Z) during thawing/warming of the perishable dielectric load (130) and repeatedly generating at least one control signal (Tn) causing the tuning circuit (115) to adjust the overall impedance (Z) to match the output impedance of the transmitter unit (110).
    Type: Application
    Filed: January 12, 2017
    Publication date: January 10, 2019
    Applicant: Antrad Medical AB
    Inventors: Pierre WESTIN, Joachim SÄLLVIN, Anders BJÖRKMAN
  • Patent number: 9474468
    Abstract: In a method for positioning linear array of electrodes (LAE) mounted on distal end section of elongated flexible member in patient's respiratory airways (PRA) at level of diaphragm, a length of the member pre-determined to position LEA at the level of the diaphragm is inserted through PRA. Signals representative of an electrical activity of the diaphragm (EAdi) are detected through LAE, presence/absence of ECG signal components is detected in EAdi signals, and position of LAE in PRA is detected in response to presence/absence of ECG signal components in EAdi signals. Lower esophageal sphincter activity may be detected in EAdi signals, and position of LAE in PRA determined in response to the detected lower esophageal sphincter. End-expiratory occlusion of PRA may be performed to verify that the electrical activity of the diaphragm coincides with a negative deflection of PRA pressure again in view of determining adequate positioning of LAE.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: October 25, 2016
    Assignee: MAQUET CRITICAL CARE AB
    Inventors: Christer Sinderby, Jennifer Beck, Frederik Jalde, Joachim Sallvin
  • Publication number: 20130345571
    Abstract: In a method for positioning linear array of electrodes (LAE) mounted on distal end section of elongated flexible member in patient's respiratory airways (PRA) at level of diaphragm, a length of the member pre-determined to position LEA at the level of the diaphragm is inserted through PRA. Signals representative of an electrical activity of the diaphragm (EAdi) are detected through LAE, presence/absence of ECG signal components is detected in EAdi signals, and position of LAE in PRA is detected in response to presence/absence of ECG signal components in EAdi signals. Lower esophageal sphincter activity may be detected in EAdi signals, and position of LAE in PRA determined in response to the detected lower esophageal sphincter. End-expiratory occlusion of PRA may be performed to verify that the electrical activity of the diaphragm coincides with a negative deflection of PRA pressure again in view of determining adequate positioning of LAE.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 26, 2013
    Applicant: Maquet Critical Care AB
    Inventors: Christer SINDERBY, Jennifer Beck, Frederik Jalde, Joachim Sallvin
  • Patent number: 8485980
    Abstract: In a method and device for positioning a linear array of electrodes mounted on a distal end section of an elongated flexible member in a patient's respiratory airways at the level of the patient's diaphragm, a length of the elongated flexible member pre-determined to position the linear array of electrodes at the level of the patient's diaphragm is inserted through the patient's respiratory airways. Signals representative of an electrical activity of the patient's diaphragm (EAdi) are detected through the electrodes of the linear array, a presence or absence of ECG signal components is detected in the EAdi signals, and the position of the linear array of electrodes in the patient's respiratory airways is detected in response to the presence or absence of the ECG signal components in the EAdi signals.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: July 16, 2013
    Assignee: Maquet Critical Care AB
    Inventors: Christer Sinderby, Jennifer Beck, Fredrik Jalde, Joachim Sallvin
  • Publication number: 20090137911
    Abstract: In a method and device for positioning a linear array of electrodes mounted on a distal end section of an elongated flexible member in a patient's respiratory airways at the level of the patient's diaphragm, a length of the elongated flexible member pre-determined to position the linear array of electrodes at the level of the patient's diaphragm is inserted through the patient's respiratory airways. Signals representative of an electrical activity of the patient's diaphragm (EAdi) are detected through the electrodes of the linear array, a presence or absence of ECG signal components is detected in the EAdi signals, and the position of the linear array of electrodes in the patient's respiratory airways is detected in response to the presence or absence of the ECG signal components in the EAdi signals.
    Type: Application
    Filed: September 26, 2008
    Publication date: May 28, 2009
    Inventors: Christer Sinderby, Jennifer Beck, Fredrik Jalde, Joachim Sallvin
  • Patent number: 7086098
    Abstract: A mechanical breathing aid for providing a regulated supply of a breathing gas has an expiratory pressure regulator for regulating gas pressure within an expiration gas flow path dependent on an input regulatory signal and an expiratory pressure sensor disposed to sense an actual gas pressure within the expiration gas flow path and to provide an output signal indicative thereof. A control unit is operably coupled to the expiratory pressure regulator and to the expiratory pressure sensor for calculating a target pressure as a function of time dependent on a value of compliance calculated from measurements of pressure and flow of provided breathing gas made during an inspiration phase, and for generating the regulatory signal dependent on a magnitude of the difference between the target pressure and the actual pressure.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: August 8, 2006
    Assignee: Maquet Critical Care AB
    Inventor: Joachim Sallvin
  • Publication number: 20030168066
    Abstract: A mechanical breathing aid for providing a regulated supply of a breathing gas has an expiratory pressure regulator for regulating gas pressure within an expiration gas flow path dependent on an input regulatory signal and an expiratory pressure sensor disposed to sense an actual gas pressure within the expiration gas flow path and to provide an output signal indicative thereof. A control unit is operably coupled to the expiratory pressure regulator and to the expiratory pressure sensor for calculating a target pressure as a function of time dependent on a value of compliance calculated from measurements of pressure and flow of provided breathing gas made during an inspiration phase, and for generating the regulatory signal dependent on a magnitude of the difference between the target pressure and the actual pressure.
    Type: Application
    Filed: March 5, 2002
    Publication date: September 11, 2003
    Applicant: Siemens Elema AB
    Inventor: Joachim Sallvin