Patents by Inventor Joakim LIN SÖRSTEDT

Joakim LIN SÖRSTEDT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11578991
    Abstract: A method and control system for generating and updating digital maps using a plurality of passages along a road portion by at least one road vehicle is provided. The method comprises obtaining positioning data and sensor data of each passage from the at least one road vehicle. Further, the method comprises forming a sub-map representation of the surrounding environment at each obtained longitudinal position based on the obtained sensor data, and estimating a longitudinal error for each obtained longitudinal position within each segment. Furthermore, the method comprises determining a new plurality of longitudinal positions of each road vehicle for each passage by applying the estimated longitudinal error on each corresponding obtained longitudinal position, and applying the determined new plurality of longitudinal positions on associated sensor data in order to generate a first layer of a map representation of the surrounding environment along the road portion.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: February 14, 2023
    Assignee: Zenuity AB
    Inventors: Tony Gustafsson, Joakim Lin Sörstedt
  • Patent number: 11555705
    Abstract: A method, system and computer program product for determining a map position of an ego-vehicle are disclosed. The method includes acquiring map data comprising a road geometry, initializing at least one dynamic landmark by measuring a position and velocity, relative to the ego-vehicle, of a surrounding vehicle, and determining a first map position of the surrounding vehicle based on this measurement and the geographical position of the ego-vehicle. Further, the method includes predicting a second map position of the surrounding vehicle, and measuring a location, relative to the ego-vehicle, of the surrounding vehicle when it is estimated to be at the second map position, whereby the geographical position of the ego-vehicle can be computed and updated.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: January 17, 2023
    Assignee: Zenuity AB
    Inventors: Joakim Lin Sörstedt, Andreas Schindler, Tony Gustafsson
  • Publication number: 20220396281
    Abstract: The present invention relates to methods and systems that utilize the production vehicles to develop new perception features related to new sensor hardware as well as new algorithms for existing sensors by using self-supervised continuous training. To achieve this the production vehicle's own perception output is fused with other sensors in order to generate a bird's eye view of the road scenario over time. The bird's eye view is synchronized with buffered sensor data that was recorded when the road scenario took place and subsequently used to train a new perception model to output the bird's eye view directly.
    Type: Application
    Filed: June 9, 2022
    Publication date: December 15, 2022
    Inventors: Mattias BRÄNNSTRÖM, Joakim LIN SÖRSTEDT, Jonas EKMARK, Mats NORDLUND
  • Publication number: 20220205804
    Abstract: The present disclosure relates to a method for determining a vehicle pose, predicting a pose (xk, yk, ?k) of vehicle on a map based on sensor data acquired by a vehicle localization system, transforming a set of map road references of a segment of a digital map from a global coordinate system to an image-frame coordinate system of a vehicle-mounted camera based on map data and predicted pose of the vehicle. The transformed set of map road references form a set of polylines in image-frame coordinate system. Identifying a set of corresponding image road reference features in an image acquired by vehicle mounted camera, where each identified road references feature defines a set of measurement coordinates (xi, yi) in image-frame. Projecting each of identified set of image road reference features onto formed set of polylines in order to obtain a set of projection points.
    Type: Application
    Filed: December 27, 2021
    Publication date: June 30, 2022
    Inventors: Junsheng FU, Han ZHANG, Tony GUSTAFSSON, Andreas SCHINDLER, Eduardo SESMA CASELLES, Erik STEINMETZ, Pontus KIELÉN, Axel BEAUVISAGE, Joakim LIN SÖRSTEDT
  • Publication number: 20210190537
    Abstract: A method and control system for generating and updating digital maps using a plurality of passages along a road portion by at least one road vehicle is provided. The method comprises obtaining positioning data and sensor data of each passage from the at least one road vehicle. Further, the method comprises forming a sub-map representation of the surrounding environment at each obtained longitudinal position based on the obtained sensor data, and estimating a longitudinal error for each obtained longitudinal position within each segment. Furthermore, the method comprises determining a new plurality of longitudinal positions of each road vehicle for each passage by applying the estimated longitudinal error on each corresponding obtained longitudinal position, and applying the determined new plurality of longitudinal positions on associated sensor data in order to generate a first layer of a map representation of the surrounding environment along the road portion.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 24, 2021
    Inventors: Tony GUSTAFSSON, Joakim LIN SÖRSTEDT
  • Publication number: 20200124422
    Abstract: A method, system and computer program product for determining a map position of an ego-vehicle are disclosed. The method includes acquiring map data comprising a road geometry, initializing at least one dynamic landmark by measuring a position and velocity, relative to the ego-vehicle, of a surrounding vehicle, and determining a first map position of the surrounding vehicle based on this measurement and the geographical position of the ego-vehicle. Further, the method includes predicting a second map position of the surrounding vehicle, and measuring a location, relative to the ego-vehicle, of the surrounding vehicle when it is estimated to be at the second map position, whereby the geographical position of the ego-vehicle can be computed and updated.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 23, 2020
    Inventors: Joakim LIN SÖRSTEDT, Andreas SCHINDLER, Tony GUSTAFSSON