Patents by Inventor Joan F. Power

Joan F. Power has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7538879
    Abstract: An apparatus and method allowing an optimized illumination in a light profile microscope by excitation of a sample with an elliptically collimated beam. The beam, which is typically supplied by a laser is collimated with unequal beam waist radii (and Rayleigh ranges) along major and minor axes orthogonal to a propagation direction, and approximates a plane sheet of illumination. The plane sheet of illumination is aligned with a thinnest width dimension thereof along the optic axis of the microscope objective, and with a center thereof at the object plane of the objective. Excitation light in a test sample is thereby confined to within a narrow thickness of the object plane of the objective lens, which minimizes out-of focus light in the image. The major axis width of the plane illumination sheet is typically a factor of ten or more greater than the minimum width, allowing a large area of the test sample to be illuminated and imaged.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: May 26, 2009
    Inventor: Joan F. Power
  • Publication number: 20080218850
    Abstract: An apparatus and method allowing an optimized illumination in a light profile microscope by excitation of a sample with an elliptically collimated beam. The beam, which is typically supplied by a laser is collimated with unequal beam waist radii (and Rayleigh ranges) along major and minor axes orthogonal to a propagation direction, and approximates a plane sheet of illumination. The plane sheet of illumination is aligned with a thinnest width dimension thereof along the optic axis of the microscope objective, and with a center thereof at the object plane of the objective. Excitation light in a test sample is thereby confined to within a narrow thickness of the object plane of the objective lens, which minimizes out-of focus light in the image. The major axis width of the plane illumination sheet is typically a factor of ten or more greater than the minimum width, allowing a large area of the test sample to be illuminated and imaged.
    Type: Application
    Filed: March 30, 2005
    Publication date: September 11, 2008
    Inventor: Joan F. Power
  • Patent number: 6614532
    Abstract: The present invention comprises an apparatus and a method of microscopy, for measuring depth dependent profiles of optical absorption, photoluminescence and light scattering in thin films on length scales of a few micrometers to a several millimeters. The principles of this invention are also directly extendable to imaging absorption and scattering at other wavelengths, and the scattering of electrons, and neutrons in thin films on the same or shorter length scales. In the optical range, this depth profile information is recovered by the direct recording of micrometer scale images of a light beam propagating along the depth axis of the material under study. The recording is implemented using a crossed beam microscope apparatus in which a collimated optical beam from a light source is propagated through the material under test.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: September 2, 2003
    Assignee: McGill University
    Inventors: Joan F. Power, Shao-wei Fu
  • Patent number: 5365065
    Abstract: All spatial elements of the thermal-wave image generated in a heated material sample are detected simultaneously, or `in parallel`, in the invention by the use of an optical-wavelength interferometer whose sensing arm contains a combination of the heated material sample, contacted to a thermally conductive, optically reflective material layer, which is in turn contacted to a phase-shift medium comprised of an optically transmissive layer of condensed phase material through which the interferometer beam passes and is reflected by the optically reflective material layer. The invention thus converts a thermal-wave image into an optical wavelength interferometric image which can then be rapidly detected in parallel and with high sensitivity using a video-camera or other optical recording device. The invention is over one hundred times more sensitive than prior art interferometric instruments which use air as the phase-shift medium.
    Type: Grant
    Filed: February 12, 1993
    Date of Patent: November 15, 1994
    Inventor: Joan F. Power