Patents by Inventor Joan M. Frankel

Joan M. Frankel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11752729
    Abstract: A stretchable reflective color-shifting film comprises a stretchable transparent polymer layer; a semi-transmissive metal layer; a transparent spacer layer; a reflective metal layer; an adhesive layer; and a stretchable base film layer. When the film body is stretched by 25%, the peak total reflectance stretched is at 80% of the peak total reflectance when the film body is unstretched according to the Total Reflectivity Test.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: September 12, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Huiwen Tai, Joan M. Frankel, Stephen P. Maki, Diane North, Robert R. Owings
  • Publication number: 20220234382
    Abstract: A transfer article with a thickness of less than 3 micrometers includes a first acrylate layer that is releasable from a metal or doped semiconductor release layer at a release value of from 2 to 50 grams/inch. The article includes a functional layer overlaying the first acrylate layer. The functional layer includes at least one microfractured inorganic layer about 3 nanometers to about 200 nanometers thick, which has a plurality of toolmarks interspersed with cracks.
    Type: Application
    Filed: May 26, 2020
    Publication date: July 28, 2022
    Inventors: Kevin W. Gotrik, Scott J. Jones, Huiwen Tai, Joan M. Frankel, Robert R. Owings, Bhaskar V. Velamakanni, Jeanne M. Bruss, David J. Rowe, Matthew E. Sousa, Bradley L. Givot
  • Publication number: 20210308984
    Abstract: A stretchable reflective color-shifting film comprises a stretchable transparent polymer layer; a semi-transmissive metal layer; a transparent spacer layer; a reflective metal layer; an adhesive layer; and a stretchable base film layer. When the film body is stretched by 25%, the peak total reflectance stretched is at 80% of the peak total reflectance when the film body is unstretched according to the Total Reflectivity Test.
    Type: Application
    Filed: July 15, 2019
    Publication date: October 7, 2021
    Inventors: Huiwen Tai, Joan M. Frankel, Stephen P. Maki, Diane North, Robert R. Owings
  • Patent number: 10162090
    Abstract: The present disclosure includes a stretchable reflective film comprising a transparent polymer layer; a continuous metal layer comprising at least one of tin or indium; a non-reactive adhesive layer; and a stretchable film layer. The stretchable reflective film has at least 30% specular reflectivity when stretched by 50% of the unstretched length according to Specular Reflectivity Test Method.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: December 25, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Joan M. Frankel, Kevin D. Hagen, Michael A. Johnson, Diane North, James A. Phipps, Audrey A. Sherman, Huiwen Tai
  • Patent number: 8798421
    Abstract: Polymer fibers are formed with concentric alternating layers of different polymer materials. The layers pairs have cross-sectional thicknesses selected for reflecting light at a selected visible wavelength. A cross-sectional dimension of the core is at least ten times an average of the selected thicknesses of the alternating layers. Some articles formed by the fibers are formed by attaching one fiber to another: the color of the fibers at the point of attachment is different from the colors of the fibers elsewhere. The fibers may be deformed to change its color properties by elongating the cross-section of the polymer fiber along a first cross-sectional axis. In some embodiments, the fibers are polarization sensitive.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: August 5, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Gregory L. Bluem, Joan M. Frankel, David C. Kramlich, Robert L. Brott, Shandon D. Hart, Lynn E. Lorimor, Patrick R. Fleming, William J. Kopecky, Bruce B. Wilson, James M. Jonza
  • Publication number: 20110096395
    Abstract: Polymer fibers are formed with concentric alternating layers of different polymer materials. The layers pairs have cross-sectional thicknesses selected for reflecting light at a selected visible wavelength. A cross-sectional dimension of the core is at least ten times an average of the selected thicknesses of the alternating layers. Some articles formed by the fibers are formed by attaching one fiber to another: the color of the fibers at the point of attachment is different from the colors of the fibers elsewhere. The fibers may be deformed to change its color properties by elongating the cross-section of the polymer fiber along a first cross-sectional axis. In some embodiments, the fibers are polarization sensitive.
    Type: Application
    Filed: March 2, 2009
    Publication date: April 28, 2011
    Inventors: Gregory L Bluem, Joan M. Frankel, David C. Kramlich, Robert L. Brott, Shandon D. Hart, Lynn E. Lorimor, Patrick R. Fleming, William J. Kopecky, Bruce B. Wilson, James M. Jonza
  • Patent number: 7773834
    Abstract: A polarizing film is made of multilayer polarizing fibers embedded within a matrix. The fibers are formed with layers of at least a first and a second polymer material. Layers of the first polymer material are disposed between layers of the second polymer material. At least one of the first and second polymer materials is birefringent. In some embodiments the thickness of the layers of at least one of the materials varies across the fiber, and may include layers are selected as quarter-wavelength thickness for light having a wavelength of more than 700 nm.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: August 10, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. Ouderkirk, Gregory L. Bluem, Robert L. Brott, Patrick R. Fleming, Joan M. Frankel, Shandon D. Hart, William J. Kopecky, Huiwen Tai, Margaret M. Vogel-Martin, Daniel J. Zillig
  • Publication number: 20090251776
    Abstract: A polarizing film is made of multilayer polarizing fibers embedded within a matrix. The fibers are formed with layers of at least a first and a second polymer material. Layers of the first polymer material are disposed between layers of the second polymer material. At least one of the first and second polymer materials is birefringent. In some embodiments the thickness of the layers of at least one of the materials varies across the fiber, and may include layers are selected as quarter-wavelength thickness for light having a wavelength of more than 700 nm.
    Type: Application
    Filed: August 30, 2006
    Publication date: October 8, 2009
    Inventors: Andrew J. Ouderkirk, Gregory L. Bluem, Robert L. Brott, Patrick R. Fleming, Joan M. Frankel, Shandon D. Hart, William J. Kopecky, Huiwen Tai, Margaret M. Vogel-Martin, Daniel J. Zillig
  • Publication number: 20080055724
    Abstract: A display system has a display panel and at least one light source for producing light to illuminate the display panel. A polarizer film may be employed between the display panel and the light source. At least one of the polarizing fibers has multiple internal birefringent interfaces between a first polymer material and a second polymer material. In some embodiments, the polarizer substantially reflects normally incident light in a first polarization state and substantially transmits normally incident light, in a second polarization state orthogonal to the first polarization state, with a haze value of at least 10%.
    Type: Application
    Filed: August 30, 2006
    Publication date: March 6, 2008
    Inventors: Gregory L. Bluem, Huiwen Tai, Patrick R. Fleming, Daniel J. Zillig, Joan M. Frankel, Robert L. Brott, William J. Kopecky, Shandon D. Hart, Kristin L. Thunhorst
  • Publication number: 20080057277
    Abstract: A polarizing film is made of multilayer polarizing fibers embedded within a matrix. The fibers are formed with layers of at least a first and a second polymer material. Layers of the first polymer material are disposed between layers of the second polymer material. At least one of the first and second polymer materials is birefringent. In some embodiments the thickness of the layers of at least one of the materials varies across the fiber. The fibers are be embedded within a material having a lower refractive index than either the first or second polymer material.
    Type: Application
    Filed: August 30, 2006
    Publication date: March 6, 2008
    Inventors: Gregory L. Bluem, Robert L. Brott, Patrick R. Fleming, Joan M. Frankel, Shandon D. Hart, William J. Kopecky, Huiwen Tai, Kristin L. Thunhorst, Daniel J. Zillig