Patents by Inventor Joanna BETTINGER

Joanna BETTINGER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10608180
    Abstract: Providing for a two-terminal memory cell having intrinsic current limiting characteristic is described herein. By way of example, the two-terminal memory cell can comprise a particle donor layer having a moderate resistivity, comprised of unstable or partially unstable metal compounds. The metal compounds can be selected to release metal atoms in response to an external stimulus (e.g., an electric field, a voltage, a current, heat, etc.) into an electrically-resistive switching medium, which is at least in part permeable to drift or diffusion of the metal atoms. The metal atoms form a thin filament through the switching medium, switching the memory cell to a conductive state. The moderate resistivity of the particle donor layer in conjunction with the thin filament can result in an intrinsic resistance to current through the memory cell at voltages above a restriction voltage, protecting the memory cell from excessive current.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: March 31, 2020
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Xianliang Liu, Xu Zhao, Zeying Ren, FNU Atiquzzaman, Joanna Bettinger, Fengchiao Joyce Lin
  • Patent number: 10134984
    Abstract: Providing an electrode for a two-terminal memory device is described herein. By way of example, the electrode can comprise a contact surface that comprises at least one surface discontinuity. For instance, the electrode can have a gap, break, or other discontinuous portion of a surface that makes electrical contact with another component of the two-terminal memory device. In one example, the contact surface can comprise an annulus or an approximation of an annulus, having a discontinuity within a center of the annulus, for instance. In some embodiments, a disclosed electrode can be formed from a conductive layer deposited over a non-continuous surface formed by a via or trench in an insulator, or over a pillar device formed from or on the insulator.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: November 20, 2018
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Joanna Bettinger, Xianliang Liu, Zeying Ren, Xu Zhao, Fnu Atiquzzaman
  • Publication number: 20180062075
    Abstract: Providing for a two-terminal memory cell having intrinsic current limiting characteristic is described herein. By way of example, the two-terminal memory cell can comprise a particle donor layer having a moderate resistivity, comprised of unstable or partially unstable metal compounds. The metal compounds can be selected to release metal atoms in response to an external stimulus (e.g., an electric field, a voltage, a current, heat, etc.) into an electrically-resistive switching medium, which is at least in part permeable to drift or diffusion of the metal atoms. The metal atoms form a thin filament through the switching medium, switching the memory cell to a conductive state. The moderate resistivity of the particle donor layer in conjunction with the thin filament can result in an intrinsic resistance to current through the memory cell at voltages above a restriction voltage, protecting the memory cell from excessive current.
    Type: Application
    Filed: August 14, 2017
    Publication date: March 1, 2018
    Inventors: Sung Hyun Jo, Xianliang Liu, Xu Zhao, Zeying Ren, FNU Atiquzzaman, Joanna Bettinger, Fengchiao Joyce Lin
  • Patent number: 9735357
    Abstract: Providing for a two-terminal memory cell having intrinsic current limiting characteristic is described herein. By way of example, the two-terminal memory cell can comprise a particle donor layer having a moderate resistivity, comprised of unstable or partially unstable metal compounds. The metal compounds can be selected to release metal atoms in response to an external stimulus (e.g., an electric field, a voltage, a current, heat, etc.) into an electrically-resistive switching medium, which is at least in part permeable to drift or diffusion of the metal atoms. The metal atoms form a thin filament through the switching medium, switching the memory cell to a conductive state. The moderate resistivity of the particle donor layer in conjunction with the thin filament can result in an intrinsic resistance to current through the memory cell at voltages above a restriction voltage, protecting the memory cell from excessive current.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: August 15, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Xianliang Liu, Xu Zhao, Zeying Ren, Fnu Atiquzzaman, Joanna Bettinger, Fengchiao Joyce Lin
  • Patent number: 9627443
    Abstract: Providing for three-dimensional memory cells having enhanced electric field characteristics is described herein. By way of example, a two-terminal memory cell can be constructed from a layered stack of materials, where respective layers are arranged along a direction that forms a non-zero angle to a normal direction of a substrate surface upon which the layered stack of materials is constructed. In some aspects, the direction can be orthogonal to or substantially orthogonal to the normal direction. In other aspects, the direction can be less than orthogonal to the normal direction. Where an internal angle of the memory cell forms a non-orthogonal angle, an enhanced electric field or current density can result, providing improved switching times and memory performance.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: April 18, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Joanna Bettinger, Xianliang Liu
  • Patent number: 9570683
    Abstract: Providing for three-dimensional memory cells having enhanced electric field characteristics and/or memory cells located at broken interconnects is described herein. By way of example, a two-terminal memory cell can be constructed from a layered stack of materials, where respective layers are arranged along a direction that forms a non-zero angle to a normal direction of a substrate surface upon which the layered stack of materials is constructed. In some aspects, the direction can be orthogonal to or substantially orthogonal to the normal direction. In other aspects, the direction can be less than orthogonal to the normal direction. Where an internal angle of the memory cell forms a non-orthogonal angle, an enhanced electric field or current density can result, providing improved switching times and memory performance.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: February 14, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Kuk-Hwan Kim, Joanna Bettinger
  • Patent number: 9564587
    Abstract: Providing for three-dimensional memory cells having enhanced electric field characteristics and/or memory cells located at broken interconnects is described herein. By way of example, a two-terminal memory cell can be constructed from a layered stack of materials, where respective layers are arranged along a direction that forms a non-zero angle to a normal direction of a substrate surface upon which the layered stack of materials is constructed. In some aspects, the direction can be orthogonal to or substantially orthogonal to the normal direction. In other aspects, the direction can be less than orthogonal to the normal direction. Where an internal angle of the memory cell forms a non-orthogonal angle, an enhanced electric field or current density can result, providing improved switching times and memory performance.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: February 7, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Kuk-Hwan Kim, Joanna Bettinger
  • Publication number: 20160225824
    Abstract: Providing for a two-terminal memory cell having intrinsic current limiting characteristic is described herein. By way of example, the two-terminal memory cell can comprise a particle donor layer having a moderate resistivity, comprised of unstable or partially unstable metal compounds. The metal compounds can be selected to release metal atoms in response to an external stimulus (e.g., an electric field, a voltage, a current, heat, etc.) into an electrically-resistive switching medium, which is at least in part permeable to drift or diffusion of the metal atoms. The metal atoms form a thin filament through the switching medium, switching the memory cell to a conductive state. The moderate resistivity of the particle donor layer in conjunction with the thin filament can result in an intrinsic resistance to current through the memory cell at voltages above a restriction voltage, protecting the memory cell from excessive current.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 4, 2016
    Inventors: Sung Hyun Jo, Xianliang Liu, Xu Zhao, Zeying Ren, FNU Atiquzzaman, Joanna Bettinger, Fengchiao Joyce Lin
  • Publication number: 20140312296
    Abstract: Providing for three-dimensional memory cells having enhanced electric field characteristics is described herein. By way of example, a two-terminal memory cell can be constructed from a layered stack of materials, where respective layers are arranged along a direction that forms a non-zero angle to a normal direction of a substrate surface upon which the layered stack of materials is constructed. In some aspects, the direction can be orthogonal to or substantially orthogonal to the normal direction. In other aspects, the direction can be less than orthogonal to the normal direction. Where an internal angle of the memory cell forms a non-orthogonal angle, an enhanced electric field or current density can result, providing improved switching times and memory performance.
    Type: Application
    Filed: February 28, 2014
    Publication date: October 23, 2014
    Applicant: Crossbar, Inc.
    Inventors: Sung Hyun JO, Joanna BETTINGER, Xianliang LIU