Patents by Inventor JoAnne L. Ingram

JoAnne L. Ingram has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7655595
    Abstract: An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: February 2, 2010
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Anthony N. Watkins, Bradley D. Leighty, Donald M. Oglesby, JoAnne L. Ingram, Jacqueline L. Schryer
  • Patent number: 7491428
    Abstract: A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to The CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: February 17, 2009
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jan M. Smits, Russell A. Wincheski, JoAnne L. Ingram, Anthony Neal Watkins, Jeffrey D. Jordan
  • Publication number: 20070281855
    Abstract: An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Applicants: Space Administration
    Inventors: Anthony N. Watkins, Bradley D. Leighty, Donald M. Oglesby, JoAnne L. Ingram, Jacqueline L. Schryer
  • Patent number: 7278324
    Abstract: A sensor has a plurality of carbon nanotube (CNT)-based conductors operatively positioned on a substrate. The conductors are arranged side-by-side, such as in a substantially parallel relationship to one another. At least one pair of spaced-apart electrodes is coupled to opposing ends of the conductors. A portion of each of the conductors spanning between each pair of electrodes comprises a plurality of carbon nanotubes arranged end-to-end and substantially aligned along an axis. Because a direct correlation exists between the resistance of a carbon nanotube and its strain, changes experienced by the portion of the structure to which the sensor is coupled induce a corresponding change in the electrical properties of the conductors, thereby enabling detection of crack growth in the structure.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: October 9, 2007
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jan M. Smits, Marlen T. Kite, Thomas C. Moore, Russell A. Wincheski, JoAnne L. Ingram, Anthony N. Watkins, Phillip A. Williams
  • Patent number: 7194912
    Abstract: A sensor has a plurality of carbon nanotube (CNT)-based conductors operatively positioned on a substrate. The conductors are arranged side-by-side, such as in a substantially parallel relationship to one another. At least one pair of spaced-apart electrodes is coupled to opposing ends of the conductors. A portion of each of the conductors spanning between each pair of electrodes comprises a plurality of carbon nanotubes arranged end-to-end and substantially aligned along an axis. Because a direct correlation exists between resistance of a carbon nanotube and carbon nanotube strain, changes experienced by the portion of the structure to which the sensor is coupled induce a change in electrical properties of the conductors.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: March 27, 2007
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey D. Jordan, Anthony Neal Watkins, Donald M. Oglesby, JoAnne L. Ingram
  • Patent number: 7129467
    Abstract: A light sensor substrate comprises a base made from a semi-conductive material and topped with a layer of an electrically non-conductive material. A first electrode and a plurality of carbon nanotube (CNT)-based conductors are positioned on the layer of electrically non-conductive material with the CNT-based conductors being distributed in a spaced apart fashion about a periphery of the first electrode. Each CNT-based conductor is coupled on one end thereof to the first electrode and extends away from the first electrode to terminate at a second free end. A second or gate electrode is positioned on the non-conductive material layer and is spaced apart from the second free end of each CNT-based conductor. Coupled to the first and second electrode is a device for detecting electron transfer along the CNT-based conductors resulting from light impinging on the CNT-based conductors.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: October 31, 2006
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Russell A. Wincheski, Jan M. Smits, Jeffrey D. Jordan, Anthony Neal Watkins, JoAnne L. Ingram
  • Publication number: 20040228961
    Abstract: A method is provided for the controlled deposition and alignment of carbon nanotubes. A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.
    Type: Application
    Filed: December 4, 2003
    Publication date: November 18, 2004
    Applicant: United States of America as represented by the Admin. of the Nat'l Aeronautics & Space Admin.
    Inventors: Jan M. Smits, Russell A. Wincheski, JoAnne L. Ingram, Anthony Neal Watkins, Jeffrey D. Jordan