Patents by Inventor Joao Lima

Joao Lima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9301705
    Abstract: A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures includes an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures, such as ablation of cardiac arrhythmias. The combined electrophysiology and imaging antenna catheter may further include an ablation tip, and be used as an intracardiac device to deliver energy to selected areas of tissue and visualize the resulting ablation lesions.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: April 5, 2016
    Assignee: Johns Hopkins University School of Medicine
    Inventors: Henry R. Halperin, Ronald D. Berger, Ergin Atalar, Elliott R. McVeigh, Albert Lardo, Hugh Caikins, Joao Lima
  • Publication number: 20120101364
    Abstract: A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures includes an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures, such as ablation of cardiac arrhythmias. The combined electrophysiology and imaging antenna catheter may further include an ablation tip, and be used as an intracardiac device to deliver energy to selected areas of tissue and visualize the resulting ablation lesions.
    Type: Application
    Filed: December 30, 2011
    Publication date: April 26, 2012
    Applicant: SURGI-VISION, INC.
    Inventors: Henry R. HALPERIN, Ronald D. Berger, Ergin ATALAR, Elliott R. McVeigh, Albert LARDO, Hugh CAIKINS, Joao LIMA
  • Patent number: 8099151
    Abstract: A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures includes an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures, such as ablation of cardiac arrhythmias. The combined electrophysiology and imaging antenna catheter may further include an ablation tip, and be used as an intracardiac device to deliver energy to selected areas of tissue and visualize the resulting ablation lesions. The antenna utilized in the combined electrophysiology and imaging catheter for receiving MR signals is preferably of the coaxial or “loopless” type.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: January 17, 2012
    Assignee: Johns Hopkins University School of Medicine
    Inventors: Henry R Halperin, Ronald D. Berger, Ergin Atalar, Elliot R McVeigh, Albert Lardo, Hugh Calkins, Joao Lima
  • Patent number: 7822460
    Abstract: A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures is disclosed. The system in its preferred embodiment provides an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures. The invention further provides a system for eliminating the pickup of RF energy in which intracardiac wires are detuned by filtering so that they become very inefficient antennas. An RF filtering system is provided for suppressing the MR imaging signal while not attenuating the RF ablative current. Steering means may be provided for steering the invasive catheter under MR guidance.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 26, 2010
    Assignee: Surgi-Vision, Inc.
    Inventors: Henry R. Halperin, Ronald D. Berger, Ergin Atalar, Elliot R. McVeigh, Albert Lardo, Hugh Calkins, Joao Lima
  • Patent number: 7412276
    Abstract: A method of performing brain therapy may include placing a subject in a main magnetic field, introducing into the subject's brain a combination imaging and therapeutic probe, the probe including a magnetic resonance imaging antenna and an electrical energy application element, acquiring a first magnetic resonance image from the antenna of the combination probe, acquiring a second magnetic resonance image from a surface coil, combining the first and second magnetic resonance images to produce a composite image, positioning the combination probe within the brain with guidance from at least one of the images, and delivering electrical energy to the brain from the electrical energy application element of the combination probe thus positioned.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: August 12, 2008
    Assignee: Johns Hopkins University School of Medicine
    Inventors: Henry R. Halperin, Ronald D. Berger, Ergin Atalar, Elliot R. McVeigh, Albert C. Lardo, Hugh Calkins, Joao Lima
  • Publication number: 20080058635
    Abstract: A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures is disclosed. The system in its preferred embodiment provides an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures. The invention is particularly applicable to catheter ablation, e.g., ablation of atrial fibrillation.
    Type: Application
    Filed: October 26, 2007
    Publication date: March 6, 2008
    Inventors: Henry Halperin, Ronald Berger, Ergin Atalar, Elliot McVeigh, Albert Lardo, Hugh Calkins, Joao Lima
  • Patent number: 7155271
    Abstract: A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures is disclosed. The system in its preferred embodiment provides an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures. The invention is particularly applicable to catheter ablation, e.g., ablation of atrial fibrillation.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: December 26, 2006
    Assignee: Johns Hopkins University School of Medicine
    Inventors: Henry R. Halperin, Ronald D. Berger, Ergin Atalar, Elliot R. McVeigh, Albert Lardo, Hugh Calkins, Joao Lima
  • Publication number: 20060241402
    Abstract: An X-ray CT apparatus 1 comprises a blood-flow information acquisition unit, a correction value calculating unit and a blood-flow image generating unit 24e. The blood-flow information acquisition unit obtains information of a relative blood flow rate in the myocardium of the subject P based on the CT image. The correction value calculating unit obtains a correction value based on the CT image in a concentration transition period defined to be a period from immediately after starting of a continuously injection of a contrast medium into the subject P until the contrast medium injected reaches to the myocardium, increases, and will be in a state where it can be considered that the contrast medium is saturated in a constant value. The blood-flow image generating unit 24e generating a blood flow value image in the myocardium by correcting the information of the relative blood flow rate with the correction value.
    Type: Application
    Filed: March 10, 2005
    Publication date: October 26, 2006
    Applicants: TOSHIBA MEDICAL SYSTEMS CORPORATION, THE JOHNS HOPKINS UNIVERSITY
    Inventors: Takashi Ichihara, Toshihiro Rifu, Joao Lima
  • Publication number: 20060100506
    Abstract: A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures includes an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures, such as ablation of cardiac arrhythmias. The combined electrophysiology and imaging antenna catheter may further include an ablation tip, and be used as an intracardiac device to deliver energy to selected areas of tissue and visualize the resulting ablation lesions. The antenna utilized in the combined electrophysiology and imaging catheter for receiving MR signals is preferably of the coaxial or “loopless” type.
    Type: Application
    Filed: December 22, 2005
    Publication date: May 11, 2006
    Applicant: Johns Hopkins University School of Medicine
    Inventors: Henry Halperin, Ronald Berger, Ergin Atalar, Elliot McVeigh, Albert Lardo, Hugh Calkins, Joao Lima
  • Publication number: 20040167392
    Abstract: A method of performing brain therapy may include placing a subject in a main magnetic field, introducing into the subject's brain a combination imaging and therapeutic probe, the probe including a magnetic resonance imaging antenna and an electrical energy application element, acquiring a first magnetic resonance image from the antenna of the combination probe, acquiring a second magnetic resonance image from a surface coil, combining the first and second magnetic resonance images to produce a composite image, positioning the combination probe within the brain with guidance from at least one of the images, and delivering electrical energy to the brain from the electrical energy application element of the combination probe thus positioned.
    Type: Application
    Filed: March 2, 2004
    Publication date: August 26, 2004
    Inventors: Henry R. Halperin, Ronald D. Berger, Ergin Atalar, Elliot R. McVeigh, Albert Lardo, Hugh Calkins, Joao Lima
  • Patent number: 6701176
    Abstract: A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures is disclosed. The system in its preferred embodiment provides an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures. The invention is particularly applicable to catheter ablation, e.g., ablation of atrial fibrillation.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: March 2, 2004
    Assignee: Johns Hopkins University School of Medicine
    Inventors: Henry R. Halperin, Ronald D. Berger, Ergin Atalar, Elliot R. McVeigh, Albert Lardo, Hugh Calkins, Joao Lima
  • Publication number: 20030199755
    Abstract: A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures is disclosed. The system in its preferred embodiment provides an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures. The invention is particularly applicable to catheter ablation, e.g., ablation of atrial fibrillation.
    Type: Application
    Filed: April 28, 2003
    Publication date: October 23, 2003
    Applicant: Johns Hopkins University School Of Medicine
    Inventors: Henry R. Halperin, Ronald D. Berger, Ergin Atalar, Elliot R. McVeigh, Albert Lardo, Hugh Calkins, Joao Lima