Patents by Inventor Joaquin Andres Hoffer

Joaquin Andres Hoffer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944810
    Abstract: A method may include positioning a catheter, including at least one electrode, within an esophagus such that the electrode is proximate to at least one sympathetic ganglion. The methods may further include recruiting the sympathetic ganglion via an electrical signal, monitoring the recruitment of the sympathetic ganglion, and, based on the monitoring the recruitment of the sympathetic ganglion, adjusting the electrical signal from the at least one electrode.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: April 2, 2024
    Assignee: Lungpacer Medical Inc.
    Inventors: Thiago Gasperini Bassi, Joaquin Andres Hoffer, Steven Campbell Reynolds
  • Publication number: 20230310851
    Abstract: A catheter may include electrodes for transvascular nerve stimulation. The electrodes may be positioned within lumens of the catheter and aligned with apertures in the outer wall of the catheter. The electrodes may produce focused electrical fields for stimulation of one or more nerves. In one embodiment, the catheter may include a set of proximal electrodes and a set of distal electrodes, and the proximal electrodes may stimulate a patient’s left phrenic nerve and the distal electrodes may stimulate a patient’s right phrenic nerve.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Applicant: Lungpacer Medical Inc.
    Inventors: Viral THAKKAR, Joaquin Andres HOFFER, Bao Dung TRAN, Douglas G. EVANS, John NASH
  • Patent number: 11707619
    Abstract: A catheter may include electrodes for transvascular nerve stimulation. The electrodes may be positioned within lumens of the catheter and aligned with apertures in the outer wall of the catheter. The electrodes may produce focused electrical fields for stimulation of one or more nerves. In one embodiment, the catheter may include a set of proximal electrodes and a set of distal electrodes, and the proximal electrodes may stimulate a patient's left phrenic nerve and the distal electrodes may stimulate a patient's right phrenic nerve.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: July 25, 2023
    Assignee: Lungpacer Medical Inc.
    Inventors: Viral S. Thakkar, Joaquin Andres Hoffer, Bao Dung Tran, Douglas G. Evans, John E. Nash
  • Publication number: 20220280782
    Abstract: The invention, in one aspect, relates to an intravascular electrode system. The system comprises one or more electrodes supported on an elongated resiliently flexible support member, and the support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel.
    Type: Application
    Filed: May 12, 2022
    Publication date: September 8, 2022
    Applicant: Lungpacer Medical Inc.
    Inventors: Joaquin Andres HOFFER, Marc-Andre NOLETTE, Viral THAKKAR, Bao Dung TRAN
  • Publication number: 20220212013
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Application
    Filed: March 23, 2022
    Publication date: July 7, 2022
    Applicant: Lungpacer Medical Inc.
    Inventors: Joaquin Andres HOFFER, Gautam SADARANGANI, Marc-Andre NOLETTE, Viral THAKKAR, Bao Dung TRAN
  • Patent number: 11369787
    Abstract: The invention, in one aspect, relates to an intravascular electrode system. The system comprises one or more electrodes supported on an elongated resiliently flexible support member, and the support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: June 28, 2022
    Assignee: Lungpacer Medical Inc.
    Inventors: Joaquin Andres Hoffer, Marc-Andre Nolette, Viral Thakkar, Bao Dung Tran
  • Patent number: 11357985
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: June 14, 2022
    Assignee: Lungpacer Medical Inc.
    Inventors: Ramasamy Meyyappan, Joaquin Andres Hoffer, Marcelo Baru, Bernard Coquinco, Rodrigo Andres Sandoval, Jessica Kit-Sum Tang
  • Patent number: 11311730
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: April 26, 2022
    Assignee: Lungpacer Medical Inc.
    Inventors: Joaquin Andres Hoffer, Gautam Sadarangani, Marc-Andre Nolette, Viral S. Thakkar, Bao Dung Tran
  • Publication number: 20220023625
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Application
    Filed: October 12, 2021
    Publication date: January 27, 2022
    Applicant: Lungpacer Medical Inc.
    Inventors: Ramasamy MEYYAPPAN, Joaquin Andres HOFFER, Marcelo BARU, Bernard COQUINCO, Rodrigo Andres SANDOVAL, Jessica Kit-Sum TANG
  • Publication number: 20210316140
    Abstract: Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.
    Type: Application
    Filed: May 6, 2021
    Publication date: October 14, 2021
    Applicant: Lungpacer Medical Inc.
    Inventor: Joaquin Andres HOFFER
  • Patent number: 11027130
    Abstract: Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: June 8, 2021
    Assignee: Lungpacer Medical Inc.
    Inventor: Joaquin Andres Hoffer
  • Publication number: 20210162205
    Abstract: A method may include positioning a catheter, including at least one electrode, within an esophagus such that the electrode is proximate to at least one sympathetic ganglion. The methods may further include recruiting the sympathetic ganglion via an electrical signal, monitoring the recruitment of the sympathetic ganglion, and, based on the monitoring the recruitment of the sympathetic ganglion, adjusting the electrical signal from the at least one electrode.
    Type: Application
    Filed: February 2, 2021
    Publication date: June 3, 2021
    Applicant: Lungpacer Medical Inc.
    Inventors: Thiago Gasperini BASSI, Joaquin Andres HOFFER, Steven Campbell REYNOLDS
  • Publication number: 20210093858
    Abstract: A catheter may include electrodes for transvascular nerve stimulation. The electrodes may be positioned within lumens of the catheter and aligned with apertures in the outer wall of the catheter. The electrodes may produce focused electrical fields for stimulation of one or more nerves. In one embodiment, the catheter may include a set of proximal electrodes and a set of distal electrodes, and the proximal electrodes may stimulate a patient's left phrenic nerve and the distal electrodes may stimulate a patient's right phrenic nerve.
    Type: Application
    Filed: October 14, 2020
    Publication date: April 1, 2021
    Applicant: Lungpacer Medical Inc.
    Inventors: Viral S. THAKKAR, Joaquin Andres HOFFER, Bao Dung TRAN, Douglas G. EVANS, John E. NASH
  • Patent number: 10940308
    Abstract: A method may include positioning a catheter, including at least one electrode, within an esophagus such that the electrode is proximate to at least one sympathetic ganglion. The methods may further include recruiting the sympathetic ganglion via an electrical signal, monitoring the recruitment of the sympathetic ganglion, and, based on the monitoring the recruitment of the sympathetic ganglion, adjusting the electrical signal from the at least one electrode.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: March 9, 2021
    Assignee: Lungpacer Medical Inc.
    Inventors: Thiago Gasperini Bassi, Joaquin Andres Hoffer, Steven Campbell Reynolds
  • Patent number: 10864374
    Abstract: Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic vagus, trigeminal, obturator or other nerves.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: December 15, 2020
    Assignee: Lungpacer Medical Inc.
    Inventor: Joaquin Andres Hoffer
  • Patent number: 10792499
    Abstract: Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: October 6, 2020
    Assignee: Lungpacer Medical Inc.
    Inventor: Joaquin Andres Hoffer
  • Patent number: 10765867
    Abstract: Methods of stimulating a nerve may include inserting a lead structure into one or more blood vessels. The lead structure may include an insulating member, first electrodes and second electrodes supported on the insulating member, and at least one metal lead. The first electrodes and second electrodes may be positioned in one or more blood vessels. The methods of stimulating a nerve may further include the lead structures being applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: September 8, 2020
    Assignee: Lungpacer Medical Inc.
    Inventor: Joaquin Andres Hoffer
  • Publication number: 20200222694
    Abstract: Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.
    Type: Application
    Filed: March 24, 2020
    Publication date: July 16, 2020
    Applicant: Lungpacer Medical Inc.
    Inventor: Joaquin Andres HOFFER
  • Publication number: 20200164207
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Applicant: Lungpacer Medical Inc.
    Inventors: Ramasamy MEYYAPPAN, Joaquin Andres HOFFER, Marcelo BARU, Bernard COQUINCO, Rodrigo Andres SANDOVAL, Jessica Kit-Sum TANG
  • Publication number: 20200147377
    Abstract: Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.
    Type: Application
    Filed: January 15, 2020
    Publication date: May 14, 2020
    Applicant: Lungpacer Medical Inc.
    Inventor: Joaquin Andres HOFFER