Patents by Inventor Joaquin Matres

Joaquin Matres has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11658254
    Abstract: A device includes a first semiconductor layer; a portion of a second semiconductor layer disposed on the first semiconductor layer; and a third semiconductor layer including a first region disposed on the portion of the second semiconductor layer and a second region disposed on the first semiconductor layer. A thickness of the first region is less than a predefined thickness. The device also includes an etch stop layer disposed on the third semiconductor layer; a plurality of distinct portions of a fourth semiconductor layer disposed on the etch stop layer and exposing one or more distinct portions of the etch stop layer over the portion of the second semiconductor layer; and a plurality of distinct portions of a superconducting layer disposed on the plurality of distinct portions of the fourth semiconductor layer and the exposed one or more distinct portions of the etch stop layer.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: May 23, 2023
    Assignee: PSIQUANTUM CORP.
    Inventors: Faraz Najafi, Mark Thompson, Damien Bonneau, Joaquin Matres Abril
  • Publication number: 20230100620
    Abstract: An optical phased array (OPA) photonic integrated chip includes a plurality of array elements, a plurality of phase shifters, a plurality of combiners, and an edge coupler configured to couple to a single mode waveguide. The plurality of phase shifters includes a layer of phase shifters that has a phase shifter connected to each array element in the plurality of array elements. The plurality of combiners is configured to connect the plurality of phase shifters to the edge coupler. The plurality of combiners includes a first combiner that has a first output that is connected to a second combiner or the edge coupler, and a second output of the first combiner is connected to a photodetector. An in-phase light portion at the first combiner is output through the first output, and an out-of-phase light portion at the first combiner is output through the second output.
    Type: Application
    Filed: August 29, 2022
    Publication date: March 30, 2023
    Inventors: Devin Brinkley, Baris Ibrahim Erkmen, Joaquin Matres Abril, Paul Epp
  • Patent number: 11536907
    Abstract: A photonic integrated circuit includes a photonic device. The photonic device includes an input region configured to receive an input signal including a plurality of multiplexed channels. The photonic device includes a metastructured dispersive region structured to partially demultiplex the input signal into an output signal and a throughput signal. The output signal includes a channel of the multiplexed channels. The throughput signal includes the remaining channels of the multiplexed channels. The photonic device includes an output region and a throughput region optically coupled with the metastructured dispersive region to receive the output signal and the throughput signal, respectively. The metastructured dispersive region includes a heterogeneous distribution of a first material and a second material that structures the metastructured dispersive region to partially demultiplex the input signal into the output signal and the throughput signal.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: December 27, 2022
    Assignee: X Development LLC
    Inventors: Joaquin Matres Abril, Carl Jonas Love Einarsson
  • Publication number: 20220373739
    Abstract: A photonic integrated circuit includes a photonic device. The photonic device includes an input region configured to receive an input signal including a plurality of multiplexed channels. The photonic device includes a metastructured dispersive region structured to partially demultiplex the input signal into an output signal and a throughput signal. The output signal includes a channel of the multiplexed channels. The throughput signal includes the remaining channels of the multiplexed channels. The photonic device includes an output region and a throughput region optically coupled with the metastructured dispersive region to receive the output signal and the throughput signal, respectively. The metastructured dispersive region includes a heterogeneous distribution of a first material and a second material that structures the metastructured dispersive region to partially demultiplex the input signal into the output signal and the throughput signal.
    Type: Application
    Filed: April 21, 2021
    Publication date: November 24, 2022
    Inventors: Joaquin Matres Abril, Carl Jonas Love Einarsson
  • Publication number: 20220262969
    Abstract: A device includes a first semiconductor layer; a portion of a second semiconductor layer disposed on the first semiconductor layer; and a third semiconductor layer including a first region disposed on the portion of the second semiconductor layer and a second region disposed on the first semiconductor layer. A thickness of the first region is less than a predefined thickness. The device also includes an etch stop layer disposed on the third semiconductor layer; a plurality of distinct portions of a fourth semiconductor layer disposed on the etch stop layer and exposing one or more distinct portions of the etch stop layer over the portion of the second semiconductor layer; and a plurality of distinct portions of a superconducting layer disposed on the plurality of distinct portions of the fourth semiconductor layer and the exposed one or more distinct portions of the etch stop layer.
    Type: Application
    Filed: March 7, 2022
    Publication date: August 18, 2022
    Inventors: Faraz NAJAFI, Mark THOMPSON, Damien BONNEAU, Joaquin Matres ABRIL
  • Patent number: 11271125
    Abstract: A device includes a first semiconductor layer; a portion of a second semiconductor layer disposed on the first semiconductor layer; and a third semiconductor layer including a first region disposed on the portion of the second semiconductor layer and a second region disposed on the first semiconductor layer. A thickness of the first region is less than a predefined thickness. The device also includes an etch stop layer disposed on the third semiconductor layer; a plurality of distinct portions of a fourth semiconductor layer disposed on the etch stop layer and exposing one or more distinct portions of the etch stop layer over the portion of the second semiconductor layer; and a plurality of distinct portions of a superconducting layer disposed on the plurality of distinct portions of the fourth semiconductor layer and the exposed one or more distinct portions of the etch stop layer.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: March 8, 2022
    Assignee: PSIQUANTUM CORP.
    Inventors: Faraz Najafi, Mark Thompson, Damien Bonneau, Joaquin Matres Abril
  • Patent number: 11177624
    Abstract: Examples of the present disclosure include a tunable laser comprising a waveguide including gain section. The waveguide overlies and is optically coupled to another waveguide. The another waveguide has a reflector at one end. A laser cavity is formed in the waveguides.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: November 16, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Stanley Cheung, Michael Renne Ty Tan, Wayne Sorin, Joaquin Matres Abril, Sagi Mathai
  • Patent number: 11002912
    Abstract: In the examples provided herein, a system includes an input waveguide, where a first end of the input waveguide is coupled to a light-emitting optical transmitter to allow the emitted light to enter the input waveguide, and a first ring resonator tunable to be resonant at a first resonant wavelength, wherein the first ring resonator is positioned near the input waveguide to couple a light at the first resonant wavelength from the input waveguide to the first ring resonator. The system also has a bus waveguide positioned to couple the light at the first resonant wavelength in the first ring resonator to the bus waveguide, and a mechanism to wavelength-tune the first ring resonator to a particular wavelength.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: May 11, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Joaquin Matres, Wayne Victor Sorin, Sagi Mathai, Lars Helge Thylen, Michael Renne Ty Tan
  • Patent number: 10820071
    Abstract: In the examples provided herein, a system has a plurality of arrayed waveguide gratings (AWG) having a plurality of input ports and a plurality of output ports. A signal within a given wavelength channel transmitted to one of the input ports of a given AWG is routed to one of the output ports of the given AWG based on a signal wavelength. The system also has a plurality of nodes, with each node comprising a set of components for each AWG that the node is coupled to. Each set of components comprises a plurality of optical transmitters, where each optical transmitter is tunable over multiple wavelength channels within a different wavelength band; a band multiplexer to multiplex the multiple wavelength channels within each different wavelength band; and a first output fiber to couple an output of the band multiplexer to one of the input ports of a first AWG.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: October 27, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Wayne Sorin, Joaquin Matres, Michael Tan
  • Patent number: 10795089
    Abstract: According to one example, the present application discloses an optical circuit comprising a grating to receive input light of mixed polarizations and output light of a same polarization to a first waveguide and a second waveguide. The first waveguide and second waveguide are optically coupled to a plurality of resonators that are coupled to a plurality of gratings that are to output light of mixed polarizations.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: October 6, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Lars Helge Thylen, Joaquin Matres Abril, Michael Renne Ty Tan
  • Publication number: 20200303573
    Abstract: A device includes a first semiconductor layer; a portion of a second semiconductor layer disposed on the first semiconductor layer; and a third semiconductor layer including a first region disposed on the portion of the second semiconductor layer and a second region disposed on the first semiconductor layer. A thickness of the first region is less than a predefined thickness. The device also includes an etch stop layer disposed on the third semiconductor layer; a plurality of distinct portions of a fourth semiconductor layer disposed on the etch stop layer and exposing one or more distinct portions of the etch stop layer over the portion of the second semiconductor layer; and a plurality of distinct portions of a superconducting layer disposed on the plurality of distinct portions of the fourth semiconductor layer and the exposed one or more distinct portions of the etch stop layer.
    Type: Application
    Filed: April 14, 2020
    Publication date: September 24, 2020
    Inventors: Faraz NAJAFI, Mark THOMPSON, Damien BONNEAU, Joaquin Matres ABRIL
  • Publication number: 20200203918
    Abstract: Examples of the present disclosure include a tunable laser comprising a waveguide including gain section. The waveguide overlies and is optically coupled to another waveguide. The another waveguide has a reflector at one end. A laser cavity is formed in the waveguides.
    Type: Application
    Filed: September 30, 2019
    Publication date: June 25, 2020
    Inventors: Stanley Cheung, Michael Renne Ty Tan, Wayne Sorin, Joaquin Matres Abril, Sagi Mathai
  • Patent number: 10677990
    Abstract: In the examples provided herein, a system includes a loop waveguide; and a grating coupler formed on the loop waveguide to couple light impinging on the grating coupler having a first polarization into the loop waveguide in a first direction, and to couple light having a second polarization, orthogonal to the first polarization, into the loop waveguide in a second direction. The system also includes a ring resonator positioned near the loop waveguide tuned to have a resonant wavelength at a first wavelength to couple light at the first wavelength out of the loop waveguide into the ring resonator. An output waveguide positioned near the ring resonator couples light out of the ring resonator into the output waveguide; and a photodetector detects light propagating out of a first end and a second end of the output waveguide.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: June 9, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Joaquin Matres, Wayne Victor Sorin, Sagi Mathai, Lars Helge Thylen, Michael Renne Ty Tan, Marco Fiorentino
  • Patent number: 10651325
    Abstract: A device includes a first semiconductor layer; a portion of a second semiconductor layer disposed on the first semiconductor layer; and a third semiconductor layer including a first region disposed on the portion of the second semiconductor layer and a second region disposed on the first semiconductor layer. A thickness of the first region is less than a predefined thickness. The device also includes an etch stop layer disposed on the third semiconductor layer; a plurality of distinct portions of a fourth semiconductor layer disposed on the etch stop layer and exposing one or more distinct portions of the etch stop layer over the portion of the second semiconductor layer; and a plurality of distinct portions of a superconducting layer disposed on the plurality of distinct portions of the fourth semiconductor layer and the exposed one or more distinct portions of the etch stop layer.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: May 12, 2020
    Assignee: PSIQUANTUM CORP.
    Inventors: Faraz Najafi, Mark Thompson, Damien Bonneau, Joaquin Matres Abril
  • Publication number: 20200100002
    Abstract: In the examples provided herein, a system has a plurality of arrayed waveguide gratings (AWG) having a plurality of input ports and a plurality of output ports. A signal within a given wavelength channel transmitted to one of the input ports of a given AWG is routed to one of the output ports of the given AWG based on a signal wavelength. The system also has a plurality of nodes, with each node comprising a set of components for each AWG that the node is coupled to. Each set of components comprises a plurality of optical transmitters, where each optical transmitter is tunable over multiple wavelength channels within a different wavelength band; a band multiplexer to multiplex the multiple wavelength channels within each different wavelength band; and a first output fiber to couple an output of the band multiplexer to one of the input ports of a first AWG.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Wayne Sorin, Joaquin Matres, Michael Tan
  • Patent number: 10530124
    Abstract: Examples of the present disclosure include a tunable laser comprising an optical coupler to couple light between a first laser cavity and a second laser cavity. The first laser cavity may extending between the optical coupler and a first reflector and include a first gain section. The second laser cavity may extend between the optical coupler and a second reflector and including a second gain section. At least one of the first laser cavity and the second laser cavity is tunable.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: January 7, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Stanley Cheung, Michael Renne Ty Tan, Wayne V Sorin, Joaquin Matres Abril, Sagi Mathai
  • Patent number: 10505659
    Abstract: In the examples provided herein, a system has a plurality of arrayed waveguide gratings (AWG) having a plurality of input ports and a plurality of output ports. A signal within a given wavelength channel transmitted to one of the input ports of a given AWG is routed to one of the output ports of the given AWG based on a signal wavelength. The system also has a plurality of nodes, with each node comprising a set of components for each AWG that the node is coupled to. Each set of components comprises a plurality of optical transmitters, where each optical transmitter is tunable over multiple wavelength channels within a different wavelength band; a band multiplexer to multiplex the multiple wavelength channels within each different wavelength band; and a first output fiber to couple an output of the band multiplexer to one of the input ports of a first AWG.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: December 10, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Wayne Sorin, Joaquin Matres, Michael Tan
  • Patent number: 10488593
    Abstract: In the examples provided herein, a polarization diversity receiver system includes a loop waveguide, and a two-dimensional grating coupler formed on the loop waveguide to couple light impinging on the grating coupler having a first polarization into the loop waveguide in a first direction, and to couple light having a second polarization orthogonal to the first polarization into the loop waveguide in a second direction. The system also includes a first output waveguide positioned near the loop waveguide in a first coupling region, a first distributed perturbation having a first resonant wavelength in the first coupling region to cause coupling of light at the first resonant wavelength between the loop waveguide and the first output waveguide, and a first photodetector to detect light propagating out of a first end and a second end of the first output waveguide.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: November 26, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Joaquin Matres, Wayne Victor Sorin, Stanley Cheung, Sagi Varghese Mathai, Michael Renne Ty Tan
  • Patent number: 10439357
    Abstract: Examples of the present disclosure include a tunable laser comprising a waveguide including gain section. The waveguide overlies and is optically coupled to another waveguide. The another waveguide has a reflector at one end. A laser cavity is formed in the waveguides.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: October 8, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Stanley Cheung, Michael Renne Ty Tan, Wayne V Sorin, Joaquin Matres Abril, Sagi Mathai
  • Publication number: 20190212499
    Abstract: According to one example, the present application discloses an optical circuit comprising a grating to receive input light of mixed polarizations and output light of a same polarization to a first waveguide and a second waveguide. The first waveguide and second waveguide are optically coupled to a plurality of resonators that are coupled to a plurality of gratings that are to output light of mixed polarizations.
    Type: Application
    Filed: March 12, 2019
    Publication date: July 11, 2019
    Inventors: Lars Helge Thylen, Joaquin Matres Abril, Michael Renne Ty Tan