Patents by Inventor Jocelyn E. Barker

Jocelyn E. Barker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10943345
    Abstract: Provided are automated (computerized) methods and systems for analyzing digitized pathology images in a variety of tissues potentially containing diseased or neoplastic cells. The method utilizes a coarse-to-fine analysis, in which an entire image is tiled and shape, color, and texture features are extracted in each tile, as primary features. A representative subset of tiles is determined within a cluster of similar tiles. A statistical analysis (e.g. principal component analysis) reduces the substantial number of “coarse” features, decreasing computational complexity of the classification algorithm. Afterwards, a fine stage provides a detailed analysis of a single representative tile from each group. A second statistical step uses a regression algorithm (e.g. elastic net classifier) to produce a diagnostic decision value for each representative tile. A weighted voting scheme aggregates the decision values from these tiles to obtain a diagnosis at the whole slide level.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: March 9, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jocelyn E. Barker, Daniel L. Rubin
  • Publication number: 20180374210
    Abstract: Provided are automated (computerized) methods and systems for analyzing digitized pathology images in a variety of tissues potentially containing diseased or neoplastic cells. The method utilizes a coarse-to-fine analysis, in which an entire image is tiled and shape, color, and texture features are extracted in each tile, as primary features. A representative subset of tiles is determined within a cluster of similar tiles. A statistical analysis (e.g. principal component analysis) reduces the substantial number of “coarse” features, decreasing computational complexity of the classification algorithm. Afterwards, a fine stage provides a detailed analysis of a single representative tile from each group. A second statistical step uses a regression algorithm (e.g. elastic net classifier) to produce a diagnostic decision value for each representative tile. A weighted voting scheme aggregates the decision values from these tiles to obtain a diagnosis at the whole slide level.
    Type: Application
    Filed: November 15, 2016
    Publication date: December 27, 2018
    Inventors: Jocelyn E. Barker, Daniel L. Rubin