Patents by Inventor Jochen Franz

Jochen Franz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11441964
    Abstract: A micromechanical pressure sensor device is equipped with a sensor substrate including a front side and a rear side. The device includes a pressure sensor unit suspended in the sensor substrate, a first cavity above the pressure sensor unit, which is exposed toward the front side via one or multiple access openings, one or multiple stress relief trenches, which laterally enclose the pressure sensor unit and form a fluidic connection from the rear side to the first cavity, and a circuit substrate, on which the rear side of the sensor substrate is bonded. A second cavity, which is in fluidic connection with the stress relief trenches, is formed below the pressure sensor unit in the circuit substrate. At least one channel is provided in a periphery of the pressure sensor unit, which is in fluidic connection with the second cavity and is exposed to the outside.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: September 13, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Volkmar Senz, Arne Dannenberg, Jochen Franz
  • Patent number: 11326969
    Abstract: A micromechanical sensor includes a substrate having a cavity; a flexible diaphragm spanning the cavity; and a lever element that spans the diaphragm and has a first and second end section on opposite sides of a center section. A first joint element is between the first end section and the substrate and a second joint element is between the center section and the diaphragm. The lever element can be pivoted due to a deflection of the diaphragm. Two capacitive sensors are provided, each having two electrodes, one electrode of each sensor being mounted at one of the end sections of the lever element, and the other being mounted on the substrate. The electrodes are disposed so that distances between the electrodes of different sensors are influenced oppositely when the lever element is pivoted. Also, an actuator is provided for applying an actuating force between the lever element and the substrate.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: May 10, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Zehringer, Andreas Duell, Arne Dannenberg, Helmut Grutzeck, Jochen Franz, Mike Schwarz, Soeren Zimmermann, Stephan Oppl
  • Patent number: 11066295
    Abstract: A micromechanical component having a mount, an adjustable element, which is connected via at least one spring to the mount, and an actuator device, a first oscillatory motion of the adjustable element about a first axis of rotation and simultaneously a second oscillatory motion of the adjustable element, which is set into the first oscillatory motion, being excitable about a second axis of rotation in response to the actuator device; and the adjustable element being configured by the at least one spring to be adjustable on the mount in such a way that the adjustable element is adjustable by a resulting angular momentum about a rotational axis, which is oriented orthogonally to the first axis of rotation and orthogonally to second axis of rotation. Also, a method for manufacturing a micromechanical component. Moreover, a method for exciting a motion of an adjustable element about a rotational axis.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: July 20, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Philip Kaupmann, Stefan Pinter, Helmut Grutzeck, Jochen Franz, Joerg Muchow
  • Publication number: 20200326256
    Abstract: A micromechanical pressure sensor device is equipped with a sensor substrate including a front side and a rear side. The device includes a pressure sensor unit suspended in the sensor substrate, a first cavity above the pressure sensor unit, which is exposed toward the front side via one or multiple access openings, one or multiple stress relief trenches, which laterally enclose the pressure sensor unit and form a fluidic connection from the rear side to the first cavity, and a circuit substrate, on which the rear side of the sensor substrate is bonded. A second cavity, which is in fluidic connection with the stress relief trenches, is formed below the pressure sensor unit in the circuit substrate. At least one channel is provided in a periphery of the pressure sensor unit, which is in fluidic connection with the second cavity and is exposed to the outside.
    Type: Application
    Filed: October 26, 2018
    Publication date: October 15, 2020
    Inventors: Volkmar Senz, Arne Dannenberg, Jochen Franz
  • Patent number: 10670482
    Abstract: A sensor element for a pressure sensor, includes a sensor membrane on which a defined number of piezoresistors are situated, the piezoresistors being configured in a circuit in such a way that, when there is a change in pressure an electrical change in voltage can be generated; at least two temperature measuring elements configured in relation to the sensor membrane in such a way that temperatures of the sensor membrane at positions of the piezoresistors can be measured using the temperature measuring elements, an electrical voltage present at the circuit of the piezoresistors due to a temperature gradient being capable of being compensated computationally using the measured temperatures.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: June 2, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Zehringer, Zoltan Lestyan, Richard Fix, Jochen Franz, Michaela Mitschke, Tobias Sebastian Frey
  • Publication number: 20200088598
    Abstract: A micromechanical sensor includes a substrate having a cavity; a flexible diaphragm that spans the cavity; and a lever element that spans the diaphragm and has a first and a second end section, the end sections lying on opposite sides of a center section. A first joint element is fitted between the first end section and the substrate and a second joint element is fitted between the center section and the diaphragm, so that the lever element is able to be pivoted due to a deflection of the diaphragm. In addition, two capacitive sensors are provided, each having two electrodes, one electrode of each sensor being mounted at one of the end sections of the lever element, and the other being mounted on the substrate. The electrodes of the sensors are disposed in such a way that distances between the electrodes of different sensors are influenced oppositely when the lever element is pivoted. Moreover, the sensor includes an actuator for applying an actuating force between the lever element and the substrate.
    Type: Application
    Filed: December 8, 2017
    Publication date: March 19, 2020
    Inventors: Stefan Zehringer, Andreas Duell, Arne Dannenberg, Helmut Grutzeck, Jochen Franz, Mike Schwarz, Soeren Zimmermann, Stephan Oppl
  • Publication number: 20190359478
    Abstract: A micromechanical component having a mount, an adjustable element, which is connected via at least one spring to the mount, and an actuator device, a first oscillatory motion of the adjustable element about a first axis of rotation and simultaneously a second oscillatory motion of the adjustable element, which is set into the first oscillatory motion, being excitable about a second axis of rotation in response to the actuator device; and the adjustable element being configured by the at least one spring to be adjustable on the mount in such a way that the adjustable element is adjustable by a resulting angular momentum about a rotational axis, which is oriented orthogonally to the first axis of rotation and orthogonally to second axis of rotation. Also, a method for manufacturing a micromechanical component. Moreover, a method for exciting a motion of an adjustable element about a rotational axis.
    Type: Application
    Filed: November 16, 2017
    Publication date: November 28, 2019
    Inventors: Philip Kaupmann, Stefan Pinter, Helmut Grutzeck, Jochen Franz, Joerg Muchow
  • Publication number: 20180328804
    Abstract: A sensor element for a pressure sensor, includes a sensor membrane on which a defined number of piezoresistors are situated, the piezoresistors being configured in a circuit in such a way that, when there is a change in pressure an electrical change in voltage can be generated; at least two temperature measuring elements configured in relation to the sensor membrane in such a way that temperatures of the sensor membrane at positions of the piezoresistors can be measured using the temperature measuring elements, an electrical voltage present at the circuit of the piezoresistors due to a temperature gradient being capable of being compensated computationally using the measured temperatures.
    Type: Application
    Filed: October 14, 2016
    Publication date: November 15, 2018
    Inventors: Stefan Zehringer, Zoltan Lestyan, Richard Fix, Jochen Franz, Michaela Mitschke, Tobias Sebastian Frey
  • Patent number: 9885866
    Abstract: A mirror system including a mirror that is mounted in a manner that permits oscillation, having a coil and at least one first spring that intercouples the mirror and the coil in a way that allows the coil to be placed as a counterweight to the oscillating mirror. Also a corresponding projection device.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: February 6, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Rainer Straub, Kerrin Doessel, Johannes Baader, Frederic Njikam Njimonzie, Joerg Muchow, Frank Schatz, Helmut Grutzeck, Simon Armbruster, Zoltan Lestyan, Stefan Leidich, Jochen Franz
  • Patent number: 9850120
    Abstract: Measures are described with the aid of which not only a rupture, but also cracks may be detected in the diaphragm structure of a micromechanical component with the aid of circuit means integrated into the diaphragm structure. At least some circuit elements are integrated for this purpose into the bottom side of the diaphragm, i.e., into a diaphragm area directly adjoining the cavern below the diaphragm.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: December 26, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Uwe Schiller, Volkmar Senz, Jochen Franz, Helmut Grutzeck, Michaela Mitschke
  • Patent number: 9816953
    Abstract: A micromechanical moisture sensor device includes: a substrate having a front side and a rear side; an interdigital printed conductor track arrangement provided above and/or below the front side of the substrate; and a moisture-sensitive polymer layer situated above and in the gaps of the interdigital printed conductor track arrangement. The moisture-sensitive polymer layer extends below the front side into the substrate.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: November 14, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jochen Franz, Uwe Schiller
  • Patent number: 9739998
    Abstract: A micromechanical assembly having a holder, a drive frame which has at least one energizable coil device disposed at least one of on and in the drive frame and which is joined to the holder via at least one frame spring, a mirror element that is at least partially framed by the drive frame and is suspended from the drive frame by a first mirror spring and a second mirror spring, the mirror element being disposed between the two mirror springs and being adjustable about a mirror axis of rotation in relation to the drive frame, and the mirror element being suspended from the drive frame asymmetrically relative to the mirror axis of rotation. A method for manufacturing a micromechanical assembly is also described. A method for operating a micromechanical assembly is also described.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: August 22, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Joerg Muchow, Helmut Grutzeck, Jochen Franz, Zoltan Lestyan
  • Patent number: 9725311
    Abstract: A micromechanical component includes: a hermetically sealed housing; a first functional element that is situated inside the housing; a first structured electrically conductive layer that contacts the first functional element and that is situated inside the housing; and a second structured electrically conductive layer, the first conductive layer being electrically contacted via the second conductive layer, and the second conductive layer being electrically contacted laterally through the housing via a hermetic through-contacting in the second conductive layer.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: August 8, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Franz, Simon Armbruster, Helmut Grutzeck, Joerg Muchow, Frederic Njikam Njimonzie, Andreas Duell, Johannes Baader, Stefan Liebing, Rainer Straub
  • Publication number: 20170052363
    Abstract: A mirror system including a mirror that is mounted in a manner that permits oscillation, having a coil and at least one first spring that intercouples the mirror and the coil in a way that allows the coil to be placed as a counterweight to the oscillating mirror. Also a corresponding projection device.
    Type: Application
    Filed: January 21, 2015
    Publication date: February 23, 2017
    Inventors: Rainer Straub, Kerrin Doessel, Johannes Baader, Frederic Njikam Njimonzie, Joerg Muchow, Frank Schatz, Helmut Grutzeck, Simon Armbruster, Zoltan Lestyan, Stefan Leidich, Jochen Franz
  • Publication number: 20150232330
    Abstract: A micromechanical component includes: a hermetically sealed housing; a first functional element that is situated inside the housing; a first structured electrically conductive layer that contacts the first functional element and that is situated inside the housing; and a second structured electrically conductive layer, the first conductive layer being electrically contacted via the second conductive layer, and the second conductive layer being electrically contacted laterally through the housing via a hermetic through-contacting in the second conductive layer.
    Type: Application
    Filed: February 4, 2015
    Publication date: August 20, 2015
    Inventors: Jochen FRANZ, Simon Armbruster, Helmut Grutzeck, Joerg Muchow, Frederic Njikam Njimonzie, Andreas Duell, Johannes Baader, Stefan Liebing, Rainer Straub
  • Publication number: 20140366630
    Abstract: A micromechanical moisture sensor device includes: a substrate having a front side and a rear side; an interdigital printed conductor track arrangement provided above and/or below the front side of the substrate; and a moisture-sensitive polymer layer situated above and in the gaps of the interdigital printed conductor track arrangement. The moisture-sensitive polymer layer extends below the front side into the substrate.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 18, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Jochen FRANZ, Uwe SCHILLER
  • Publication number: 20130308173
    Abstract: A micromechanical assembly having a holder, a drive frame which has at least one energizable coil device disposed at least one of on and in the drive frame and which is joined to the holder via at least one frame spring, a mirror element that is at least partially framed by the drive frame and is suspended from the drive frame by a first mirror spring and a second mirror spring, the mirror element being disposed between the two mirror springs and being adjustable about a mirror axis of rotation in relation to the drive frame, and the mirror element being suspended from the drive frame asymmetrically relative to the mirror axis of rotation. A method for manufacturing a micromechanical assembly is also described. A method for operating a micromechanical assembly is also described.
    Type: Application
    Filed: May 15, 2013
    Publication date: November 21, 2013
    Inventors: Joerg MUCHOW, Helmut GRUTZECK, Jochen FRANZ, Zoltan LESTYAN
  • Publication number: 20130234140
    Abstract: Measures are described with the aid of which not only a rupture, but also cracks may be detected in the diaphragm structure of a micromechanical component with the aid of circuit means integrated into the diaphragm structure. At least some circuit elements are integrated for this purpose into the bottom side of the diaphragm, i.e., into a diaphragm area directly adjoining the cavern below the diaphragm.
    Type: Application
    Filed: February 7, 2013
    Publication date: September 12, 2013
    Applicant: Robert Bosch GmbH
    Inventors: Uwe SCHILLER, Volkmar SENZ, Jochen FRANZ, Helmut GRUTZECK, Michaela MITSCHKE
  • Publication number: 20080061237
    Abstract: An infrared sensor having at least one measuring structure, which has, for example, a sensor chip having a measuring structure and a cap chip which is attached to the sensor chip and, together with the sensor chip, defines a sensor space; a screen having an internal screen area and an external screen area surrounding the internal screen area being formed on the top side of the cap chip; the internal screen area which is transparent to the infrared radiation to be detected being formed above the measuring structure, and the external screen area being at least partly non-transparent for the incident infrared radiation. The external screen area may be designed in particular as a reflective coating of metal or a dielectric layer, as reflective structuring formed by trenches having oblique surfaces, or as absorbing structuring.
    Type: Application
    Filed: May 11, 2005
    Publication date: March 13, 2008
    Inventors: Jochen Franz, Frank Reichenbach, Dieter Maurer, Holger Hoefer, Mark-Alexander Schweiker
  • Patent number: 7316161
    Abstract: A rotation rate sensor having a substrate and a Coriolis element is proposed, the Coriolis element being situated above a surface of a substrate; the Coriolis element being able to be induced to vibrate in parallel to a first axis (X); an excursion of the Coriolis element being detectable, based on a Coriolis force in a second axis (Y), which is provided to be essentially perpendicular to the first axis (X); the first and second axes (X, Y) being provided parallel to the surface of the substrate, wherein force-conveying means are provided, the means being provided to convey a dynamic force effect between the substrate and the Coriolis element.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: January 8, 2008
    Assignee: Robert Bosch GmbH
    Inventors: Rainer Willig, Jochen Franz, Burkhard Kuhlmann, Joerg Hauer, Udo-Martin Gomez, Dieter Maurer, Christian Doering, Wolfram Bauer, Udo Bischof, Reinhard Neul, Johannes Classen, Christoph Lang, Jens Frey