Patents by Inventor Jochen Kerres

Jochen Kerres has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230014901
    Abstract: The present invention relates to new anion exchange polymers and (blend) membranes made from polymers containing highly fluorinated aromatic groups by means of nucleophilic substitution and processes for their production by means of nucleophilic aromatic substitution and their areas of application in membrane processes, in particular in electrochemical membrane processes such as fuel cells, electrolysis and redox flow batteries.
    Type: Application
    Filed: November 17, 2020
    Publication date: January 19, 2023
    Inventors: Jochen KERRES, Vladimir ATANASOV, Hyeongrae CHO
  • Publication number: 20220212183
    Abstract: The invention relates to:—anion exchange blend membranes consisting the following blend components:—a halomethylated polymer (a polymer with —(CH2)x—CH2—Hal groups, Hal=F, CI, Br, I; x=0-12), which is quaternised with a tertiary or a n-alkylated/n-arylated imidazole, an N-alkylated/N-arylated benzimidazole or an N-alkylated/N-arylated pyrazol to form an anion exchanger polymer.
    Type: Application
    Filed: March 21, 2022
    Publication date: July 7, 2022
    Inventor: Jochen KERRES
  • Patent number: 11278879
    Abstract: The invention relates to: —anion exchange blend membranes consisting the following blend components: —a halomethylated polymer (a polymer with —(CH2)x—CH2—Hal groups, Hal=F, Cl, Br, I; x=0-12), which is quaternised with a tertiary or a n-alkylated/n-arylated imidazole, an N-alkylated/N-arylated benzimidazole or an N-alkylated/N-arylated pyrazol to form an anion exchanger polymer.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: March 22, 2022
    Inventor: Jochen Kerres
  • Publication number: 20200023348
    Abstract: The invention relates to: —anion exchange blend membranes consisting the following blend components: —a halomethylated polymer (a polymer with —(CH2)x—CH2—Hal groups, Hal=F, Cl, Br, I; x=0-12), which is quaternised with a tertiary or a n-alkylated/n-arylated imidazole, an N-alkylated/N-arylated benzimidazole or an N-alkylated/N-arylated pyrazol to form an anion exchanger polymer.
    Type: Application
    Filed: June 22, 2017
    Publication date: January 23, 2020
    Inventor: Jochen KERRES
  • Publication number: 20170170505
    Abstract: A blend or blend membrane formed from a hydroxymethylene-oligo-phosphonic acid R-C(P03H2)x(OH)y and a polymer, in which the radical R is any organic radical, x and y are integers, the hydroxymethylene-oligo-phosphonic acid is a product of a reaction involving a carbonic acid, a carbonic acid halide or a carbonic acid anhydride, and the polymer includes a functional group selected from the group consisting of (i) suitable cation exchange groups or their non-ionic precursor and (ii) suitable basic groups.
    Type: Application
    Filed: August 19, 2016
    Publication date: June 15, 2017
    Inventors: Thomas Häring, Jochen Kerres, Frank Schönberger, Martin Hein
  • Patent number: 9675939
    Abstract: The invention relates to a composite or a composite membrane consisting of an ionomer and of an inorganic optionally functionalized phyllosilicate. The isomer can be: (a) a cation exchange polymer; (b) an anion exchange polymer; (c) a polymer containing both anion exchanger groupings as well as cation exchanger groupings on the polymer chain; or (d) a blend consisting of (a) and (b), whereby the mixture ratio can range from 100% (a) to 100% (b). The blend can be ionically and even covalently cross-linked. The inorganic constituents can be selected from the group consisting of phyllosilicates or tectosilicates.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: June 13, 2017
    Assignees: THOMAS HÄRING, RIMA HÄRING
    Inventors: Jochen Kerres, Thomas Häring, Rima Häring
  • Publication number: 20170114196
    Abstract: Described is a method for producing covalently and/or ionically cross-linked blend membranes from a halomethylated polymer, a polymer comprising tertiary N-basic groups, preferably polybenzimidazole, and, optionally, a polymer comprising cation exchanger groups such as sulfonic acid groups or phosphonic acid groups. The membranes can be tailor-made in respect of the properties thereof and are suitable, for example, for use as cation exchanger membranes or anion exchanger membranes in low-temperature fuel cells or low-temperature electrolysis or in redox flow batteries, or—when doped with proton conductors such as phosphoric acid or phosphonic acid—for use in medium-temperature fuel cells or medium-temperature electrolysis.
    Type: Application
    Filed: June 12, 2015
    Publication date: April 27, 2017
    Inventors: Thomas HÄRING, Jochen KERRES, Carlo MORANDI
  • Patent number: 8742021
    Abstract: Ionomers and ionomer membranes, consisting of a non-fluorinated or partly fluorinated non-, partly or fully-aromatic main chain and a non- or partly-fluorinated side chain with ionic groups or their non-ionic precursors, have a positive impact on the proton conductivity of the ionomers. Various processes produce these polymeric proton conductors.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: June 3, 2014
    Assignee: Thomas Häring and Rima Häring
    Inventors: Thomas Haring, Jochen Kerres, Martin Hein
  • Patent number: 8637174
    Abstract: Various blends and blend membranes from low-molecular hydroxymethylene-oligo-phosphonic acids R—C(PO3H2)x(OH)y and polymers, the group R representing any organic group, the polymers containing cation exchanger groups or their nonionic precursors of the type SO2X, X being a halogen, OH, OMe, NR1R2, OR1 with Me being any metal cation or ammonium cation, R1, R2 being H or any aryl- or alkyl group, PDX2, COX and/or basic groups such as primary, secondary or tertiary amino groups, imidazole groups, pyridine groups, pyrazole groups etc. and/or OH groups. Such membranes may also include polymers that are modified with the 1-hydroxymethylene-1,1-bisphosphonic acid group.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: January 28, 2014
    Inventors: Thomas Häring, Jochen Kerres, Frank Schönberger, Martin Hein
  • Patent number: 8629216
    Abstract: Ionomers and ionomer membranes, consisting of a non-fluorinated or partly fluorinated non-, partly or fully-aromatic main chain and a non- or partly-fluorinated side chain with ionic groups or their non-ionic precursors, have a positive impact on the proton conductivity of the ionomers. Various processes produce these polymeric proton conductors.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: January 14, 2014
    Assignee: Thomas Häring and Rima Häring
    Inventors: Thomas Haring, Jochen Kerres, Martin Hein
  • Patent number: 8592091
    Abstract: In a method for producing a proton-conductive, structured electrolyte membrane, particularly for a fuel cell, a coating, which comprises at least one ion-conductive cross-linking component having at least one acid group and at least one photoactive substances interacting therewith, is applied onto a solid body surface. The coating is optically masked in that at least one region of the coating, in which the electrolyte membrane is supposed to be, is exposed such that the cross-linking component cross-links with the photoactive substances to form a polymer and/or copolymer network adhering to the solid body surface. At least one unexposed region of the coating is removed in order to structure the electrolyte membrane.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: November 26, 2013
    Assignee: Micronas GmbH
    Inventors: Gilbert Erdler, Holger Reinecke, Mirko Frank, Claas Mueller, Jochen Kerres
  • Publication number: 20120248031
    Abstract: The invention relates to a composite or a composite membrane consisting of an ionomer and of an inorganic optionally functionalized phyllosilicate. The isomer can be: (a) a cation exchange polymer; (b) an anion exchange polymer; (c) a polymer containing both anion exchanger groupings as well as cation exchanger groupings on the polymer chain; or (d) a blend consisting of (a) and (b), whereby the mixture ratio can range from 100% (a) to 100% (b). The blend can be ionically and even covalently cross-linked. The inorganic constituents can be selected from the group consisting of phyllosilicates or tectosilicates.
    Type: Application
    Filed: February 6, 2012
    Publication date: October 4, 2012
    Inventors: Jochen Kerres, Thomas Häring, Rima Häring
  • Publication number: 20120245237
    Abstract: Ionomers and ionomer membranes with the ionic group on a flexible side chain have a positive impact on the proton conductivity of the ionomers. Various processes produce these polymeric proton conductors.
    Type: Application
    Filed: December 19, 2011
    Publication date: September 27, 2012
    Inventors: Thomas Häring, Jochen Kerres, Martin Hein
  • Patent number: 8168705
    Abstract: The invention relates to novel organic/inorganic hybrid membranes which have the following composition: a polymer acid containing —SO3H, PO3H2, —COOH or B(OH)2 groups, a polymeric ease (optional), which contains primary, secondary or tertiary amino groups, pyridine groups, imidazole, benzimidazole, triazole, benzotriazole, pyrazole or benzopyrazole groups, either in the side chain or in the main chain; an additional polymeric base (optional) containing the aforementioned basic groups; an element or metal oxide or hydroxide, which has been obtained by hydrolysis and/or sol-gel reaction of an elementalorganic and/or metalorganic compound during the membrane forming process and/or by a re-treatment of the membrane in aqueous acidic, alkaline or neutral electrolytes. The invention also relates to methods for producing said membranes and to various uses for membranes of this type.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: May 1, 2012
    Inventor: Jochen Kerres
  • Patent number: 8110517
    Abstract: The invention relates to a composite or a composite membrane consisting of an ionomer and of an inorganic optionally functionalized phyllosilicate. The isomer can be: (a) a cation exchange polymer; (b) an anion exchange polymer; (c) a polymer containing both anion exchanger groupings as well as cation exchanger groupings on the polymer chain; or (d) a blend consisting of (a) and (b), whereby the mixture ratio can range from 100% (a) to 100% (b). The blend can be ionically and even covalently cross-linked. The inorganic constituents can be selected from the group consisting of phyllosilicates or tectosilicates.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: February 7, 2012
    Inventors: Jochen Kerres, Thomas Häring, Rima Häring
  • Patent number: 8030414
    Abstract: The invention relates to novel polymers or oligomers containing at least sulfinate groups (P—(SO2)nX, X=1-(n=1), 2-(n=2) or 3-(n=3) valent metal cation or H+ or ammonium ion NR4+ where R=alkyl, aryl, H), which are obtained by completely or partially reducing polymers or oligomers containing at least SO2Y-groups (Y?F, Cl, Br, I, OR, NR2 (R=alkyl and/or aryl and/or H), N-imidazolyl, N-pyrazolyl) by means of suitable reducing agents in a suspension or in a solution form. Polymer and polymer(blend)membranes which are obtained by further reacting the received sulfinated polymers, especially by alkylation of the sulfinate groups with mono- di- or oligo functional electrophiles. The invention further relates to methods for producing the sulfinated polymers and for further reacting the sulfinated polymers with electrophiles by S-alkylation.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: October 4, 2011
    Inventors: Thomas Haring, Jochen Kerres, Wei Zhang
  • Publication number: 20110217659
    Abstract: In a method for producing a proton-conductive, structured electrolyte membrane, particularly for a fuel cell, a coating, which comprises at least one ion-conductive cross-linking component having at least one acid group and at least one photoactive substances interacting therewith, is applied onto a solid body surface. The coating is optically masked in that at least one region of the coating, in which the electrolyte membrane is supposed to be, is exposed such that the cross-linking component cross-links with the photoactive substances to form a polymer and/or copolymer network adhering to the solid body surface. At least one unexposed region of the coating is removed in order to structure the electrolyte membrane.
    Type: Application
    Filed: January 10, 2011
    Publication date: September 8, 2011
    Inventors: Gilbert ERDLER, Holger Reinecke, Mirko Frank, Claas Mueller, Jochen Kerres
  • Publication number: 20110027691
    Abstract: The invention relates to novel organic/inorganic hybrid membranes which have the following composition: a polymer acid containing —SO3H, PO3H2, —COOH or B(OH)2 groups, a polymeric ease (optional), which contains primary, secondary or tertiary amino groups, pyridine groups, imidazole, benzimidazole, triazole, benzotriazole, pyrazole or benzopyrazole groups, either in the side chain or in the main chain; an additional polymeric base (optional) containing the aforementioned basic groups; an element or metal oxide or hydroxide, which has been obtained by hydrolysis and/or sol-gel reaction of an elementalorganic and/or metalorganic compound during the membrane forming process and/or by a re-treatment of the membrane in aqueous acidic, alkaline or neutral electrolytes. The invention also relates to methods for producing said membranes and to various uses for membranes of this type.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 3, 2011
    Inventor: Jochen Kerres
  • Publication number: 20100151352
    Abstract: The invention relates to the following types of composite membranes; composites or composite membranes obtained by adding a metal salt, e.g. from ZrOCl2, to a solvent, especially DMSO, for dissolving one or more polymers in an organic solvent or in aqueous systems, in addition to the subsequent precipitation in the matrix of the thus produced composite-membrane by post-treatment thereof in an acid or in a salt solution, especially phosphoric acid. The invention also relates to composites or composite membranes obtained by subsequent ion exchange of finished polymer membranes with a suitable salt cation, especially ZrO2+, wherein the polymer membrane is, optionally, swollen with an organic solvent or a mixture of organic solvent with water prior to the ion exchange and the subsequent precipitation of a low soluble salt, e.g. from Zr3(PO4)4, in the membrane by post-treatment thereof in an acid or in a salt solution, especially phosphoric acid.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 17, 2010
    Inventors: Thomas Haring, Vladimir Linkov, Jochen Kerres, Andreas Ullrich, Chy-Ming Tang, Martin Hein, Wei Zhang
  • Publication number: 20100092833
    Abstract: The invention relates to a composite or a composite membrane consisting of an ionomer and of an inorganic optionally functionalized phyllosilicate. The isomer can be: (a) a cation exchange polymer; (b) an anion exchange polymer; (c) a polymer containing both anion exchanger groupings as well as cation exchanger groupings on the polymer chain; or (d) a blend consisting of (a) and (b), whereby the mixture ratio can range from 100% (a) to 100% (b). The blend can be ionically and even covalently cross-linked. The inorganic constituents can be selected from the group consisting of phyllosilicates or tectosilicates.
    Type: Application
    Filed: October 21, 2009
    Publication date: April 15, 2010
    Inventors: Jochen KERRES, Thomas HÄRING, Rima HÄRING