Patents by Inventor Jochen Salfeld

Jochen Salfeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060024293
    Abstract: Human antibodies, preferably recombinant human antibodies, that specifically bind to human tumor necrosis factor ? (hTNF?) are disclosed. These antibodies have high affinity for hTNF? (e.g., Kd=10?8 M or less), a slow off rate for hTNF? dissociation (e.g., Koff=10?3 sec?1 or less) and neutralize hTNF? activity in vitro and in vivo. An antibody of the invention can be a full-length antibody or an antigen-binding portion thereof. The antibodies, or antibody portions, of the invention are useful for detecting hTNF? and for inhibiting hTNF? activity, e.g., in a human subject suffering from a disorder in which hTNF? activity is detrimental. Nucleic acids, vectors and host cells for expressing the recombinant human antibodies of the invention, and methods of synthesizing the recombinant human antibodies, are also encompassed by the invention.
    Type: Application
    Filed: September 21, 2005
    Publication date: February 2, 2006
    Applicant: Abbott Biotechnology Ltd.
    Inventors: Jochen Salfeld, Deborah Allen, Hendricus Hoogenboom, Zehra Kaymakcalan, Boris Labkovsky, John Mankovich, Brian McGuinness, Andrew Roberts, Paul Sakorafas, David Schoenhaut, Tristan Vaughan, Michael White, Alison Wilton
  • Patent number: 6914128
    Abstract: Human antibodies, preferably recombinant human antibodies, that specifically bind to human interleukin-12 (hIL-12) are disclosed. Preferred antibodies have high affinity for hIL-12 and neutralize hIL-12 activity in vitro and in vivo. An antibody of the invention can be a full-length antibody or an antigen-binding portion thereof. The antibodies, or antibody portions, of the invention are useful for detecting hIL-12 and for inhibiting hIL-12 activity, e.g., in a human subject suffering from a disorder in which hIL-12 activity is detrimental. Nucleic acids, vectors and host cells for expressing the recombinant human antibodies of the invention, and methods of synthesizing the recombinant human antibodies, are also encompassed by the invention.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: July 5, 2005
    Assignee: Abbott GmbH & Co. KG
    Inventors: Jochen Salfeld, Michael Roguska, Michael Paskind, Subhashis Banerjee, Daniel Tracey, Michael White, Zehra Kaymakcalan, Boris Labkovsky, Paul Sakorafas, Geertruida M. Veldman, Amy Venturini, Angela Widom, Stuart Friedrich, Nicholas W. Warne, Angela Myles, John Gawain Elvin, Alexander Robert Duncan, Elaine Joy Derbyshire, Sara Carmen, Thor Las Holtet, Sarah Leila Du Fou, Stephen Smith
  • Publication number: 20050004354
    Abstract: Human antibodies, preferably recombinant human antibodies, that specifically bind to human interleukin-12 (hIL-12) are disclosed. Preferred antibodies have high affinity for hIL-12 and neutralize hIL-12 activity in vitro and in vivo. An antibody of the invention can be a full-length antibody or an antigen-binding portion thereof. The antibodies, or antibody portions, of the invention are useful for detecting hIL-12 and for inhibiting hIL-12 activity, e.g., in a human subject suffering from a disorder in which hIL-12 activity is detrimental. Nucleic acids, vectors and host cells for expressing the recombinant human antibodies of the invention, and methods of synthesizing the recombinant human antibodies, are also encompassed by the invention.
    Type: Application
    Filed: July 1, 2004
    Publication date: January 6, 2005
    Applicant: Abbott GMBH & Co., KG
    Inventors: Jochen Salfeld, Michael Roguska, Michael Paskind, Subhashis Banerjee, Daniel Tracey, Michael White, Zehra Kaymakcalan, Boris Labkovsky, Paul Sakorafas, Geertruida Veldman, Amy Venturini, Angela Widom, Stuart Friedrich, Nicholas Warne, Angela Myles, John Elvin, Alexander Duncan, Elaine Derbyshire, Sara Carmen, Stephen Smith, Thor Holtet, Sarah Du Fou