Patents by Inventor Jodi Zilinski

Jodi Zilinski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9042982
    Abstract: Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: May 26, 2015
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Yong K. Cho, David Igel, Luc R. Mongeon, John C. Rueter, Harry Stone, Jodi Zilinski
  • Publication number: 20120150253
    Abstract: Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
    Type: Application
    Filed: February 20, 2012
    Publication date: June 14, 2012
    Applicant: Medtronic, Inc.
    Inventors: John E. Burnes, Yong K. Cho, David Igel, Luc R. Mongeon, John C. Rueter, Harry Stone, Jodi Zilinski
  • Patent number: 8135463
    Abstract: Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: March 13, 2012
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Yong K. Cho, David Igel, Luc R. Mongeon, John C. Rueter, Harry Stone, Jodi Zilinski
  • Patent number: 7711423
    Abstract: Impedance, e.g. sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change. Other methods vary the AA interval to maximize impedance change over the entire cardiac cycle or during the atrial cycle.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: May 4, 2010
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, David A. Igel, John C. Rueter, Yong K. Cho, Luc R. Mongeon, Harold E. Stone, Jodi Zilinski
  • Patent number: 7228174
    Abstract: Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: June 5, 2007
    Assignee: Medtronics, Inc.
    Inventors: John E. Burnes, Yong K. Cho, David Igel, Luc R. Mongeon, John C. Rueter, Harry Stone, Jodi Zilinski
  • Publication number: 20060271117
    Abstract: Impedance, e.g. sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change. Other methods vary the AA interval to maximize impedance change over the entire cardiac cycle or during the atrial cycle.
    Type: Application
    Filed: May 24, 2005
    Publication date: November 30, 2006
    Inventors: John Burnes, David Igel, John Rueter, Yong Cho, Luc Mongeon, Harold Stone, Jodi Zilinski
  • Publication number: 20030204212
    Abstract: Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
    Type: Application
    Filed: April 29, 2002
    Publication date: October 30, 2003
    Inventors: John E. Burnes, Yong K. Cho, David Igel, Luc R. Mongeon, John C. Rueter, Harry Stone, Jodi Zilinski