Patents by Inventor Jody W. Wilson

Jody W. Wilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180188196
    Abstract: A multi-component fluid composition and concentration sensor system and method. The system can be configured with multiple sensing elements whereby each specifically responds to different combinations and concentrations of multiple fluid component mixtures. Because these responses can be captured and committed to a lookup table during an initial calibration sequence, subsequent measurements of unknown mixtures of the same gases will match known states found in the lookup table and the fluid concentrations can be deduced. The number of sensing elements with unique responses to the fluid mixtures should equal the number of unknown fluids that are active on the sensing surfaces, similar to how solving for multiple variables requires no fewer equations than there are unknowns, i.e. “3 equations and 3 variables.
    Type: Application
    Filed: June 16, 2016
    Publication date: July 5, 2018
    Applicant: Multicore Photonics, Inc.
    Inventors: Christian Adams, Darren T. Engle, Robert S. Ryan, Jody W. Wilson
  • Publication number: 20180172536
    Abstract: A pressure sensor device includes a pressure chamber housing, at least two separate pressure chambers within the housing, at least one pressure port fluidically coupled to each of the at least two pressure chambers, at least one pressure transmitting element per every two pressure chambers disposed in the pressure chamber, which separates the at least two pressure chambers, and at least two optical sensing elements disposed in at least one of the pressure chambers, wherein the at least two optical sensing elements are each optically coupled to an optical transmission medium.
    Type: Application
    Filed: June 15, 2016
    Publication date: June 21, 2018
    Applicant: Multicore Photonics, Inc.
    Inventors: Christian Adams, Darren T. Engle, Robert S. Ryan, Jody W. Wilson
  • Patent number: 8302403
    Abstract: A compressor-less micro gas turbine has a compressed working medium container for maintaining a gas turbine under pressure. A combustion chamber is in fluid communication with the compressed gas container for receiving a gas from the gas container and heating the gas within the combustion chamber to create an expanded gas. A heater heats the combustion chamber to expand the working gas therein. A turbine in fluid communication with the combustion chamber for receiving the expanded gas. The expanded gas drives the turbine. A generator is operatively coupled to the turbine. The turbine provides a mechanical input to the generator causing the generator to produce electricity.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: November 6, 2012
    Assignee: Acudyne Incorporated
    Inventors: Darren T. Engle, Jody W. Wilson
  • Patent number: 8276389
    Abstract: An arrangement (10) for conveying combustion gas from a plurality of can annular combustors to a turbine first stage blade section of a gas turbine engine, the arrangement (10) including a plurality of interconnected integrated exit piece (IEP) sections (16) defining an annular chamber (18) oriented concentric to a gas turbine engine longitudinal axis (20) upstream of the turbine first stage blade section. Each respective IEP (16) includes a first flow path section (40) receiving and fully bounding a first flow from a respective can annular combustor along a respective common axis (22) there between, and delivering a partially bounded first flow to a downstream adjacent IEP section (42). Each respective IEP further includes a second flow path section (112) receiving a partially bounded second flow from an upstream adjacent IEP (66) and delivering at least part of the second flow to the turbine first stage blade section.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: October 2, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Richard C. Charron, Raymond S. Nordlund, Jay A. Morrison, Ernie B. Campbell, Daniel J. Pierce, Matthew D. Montgomery, Jody W. Wilson
  • Patent number: 8230688
    Abstract: An arrangement for delivering gasses from can combustors of a can annular gas turbine combustion engine to a turbine first stage section including a first row of turbine blades, the arrangement including a flow-directing structure for each combustor, wherein each flow-directing structure includes a straight path and an annular chamber end, wherein the annular chamber ends together define an annular chamber for delivering the gas flow to the turbine first stage section, wherein gasses flow from respective combustors, through respective straight paths, and into the annular chamber as respective straight gas flows, and wherein the annular chamber is configured to unite the respective straight gas flows along respective shear planes to form a singular annular gas flow, and wherein the annular chamber is configured to impart circumferential motion to the singular annular gas flow before the singular annular gas flow exits the annular chamber to the first row of blades.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: July 31, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Jody W. Wilson, Raymond S. Nordlund, Richard C. Charron
  • Patent number: 8015818
    Abstract: A transition duct (30) for a gas turbine engine (2) having improved cooling and reduced stress levels. The transition duct may be formed of two panels ((36, 38) joined together with welds (40) disposed remote from the bent corner regions (34) of the panels. Cooling channels (32) extending longitudinally in the direction of flow of the hot combustion gas carried by the duct are formed within each panel, including the corner regions. Because the entire annular width (W) of the transition duct is cooled, the gap (G) separating adjacent ducts around the inlet to the turbine (4) may be reduced when compared to prior art designs. Two-panel construction with welds remote from the corner regions is facilitated by maintaining the minimum bend radius in the corners (R2) and in the direction of flow (R4) to be greater than in prior art designs.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: September 13, 2011
    Assignee: Siemens Energy, Inc.
    Inventors: Jody W. Wilson, Raymond Scott Nordlund, Adam Weaver
  • Publication number: 20110203282
    Abstract: An arrangement (10) for conveying combustion gas from a plurality of can annular combustors to a turbine first stage blade section of a gas turbine engine, the arrangement (10) including a plurality of interconnected integrated exit piece (IEP) sections (16) defining an annular chamber (18) oriented concentric to a gas turbine engine longitudinal axis (20) upstream of the turbine first stage blade section. Each respective IEP (16) includes a first flow path section (40) receiving and fully bounding a first flow from a respective can annular combustor along a respective common axis (22) there between, and delivering a partially bounded first flow to a downstream adjacent IEP section (42). Each respective IEP further includes a second flow path section (112) receiving a partially bounded second flow from an upstream adjacent IEP (66) and delivering at least part of the second flow to the turbine first stage blade section.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 25, 2011
    Inventors: Richard C. Charron, Raymond S. Nordlund, Jay A. Morrison, Ernie B. Campbell, Daniel J. Pierce, Matthew D. Montgomery, Jody W. Wilson
  • Patent number: 7958734
    Abstract: A cover assembly disposed about a rotor in a gas turbine engine. The cover assembly comprises a first cover, a second cover, and securing structure. The first cover is disposed about the rotor and comprises a forward end and an opposed aft end. The first cover is associated with a case mounting structure that is fixed to an engine casing. The second cover is disposed about the rotor and comprises a forward end and an opposed aft end. At least a portion of the first cover is disposed radially outwardly from the second cover. The securing structure couples the first cover to the second cover and permits relative radial movement between the first and second covers.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: June 14, 2011
    Assignee: Siemens Energy, Inc.
    Inventors: Hubertus E. Paprotna, Richard Colin Charron, Jody W. Wilson
  • Publication number: 20110070078
    Abstract: A cover assembly disposed about a rotor in a gas turbine engine. The cover assembly comprises a first cover, a second cover, and securing structure. The first cover is disposed about the rotor and comprises a forward end and an opposed aft end. The first cover is associated with a case mounting structure that is fixed to an engine casing. The second cover is disposed about the rotor and comprises a forward end and an opposed aft end. At least a portion of the first cover is disposed radially outwardly from the second cover. The securing structure couples the first cover to the second cover and permits relative radial movement between the first and second covers.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Inventors: Hubertus E. Paprotna, Richard Colin Charron, Jody W. Wilson
  • Publication number: 20100077719
    Abstract: An arrangement for delivering gasses from can combustors of a can annular gas turbine combustion engine to a turbine first stage section including a first row of turbine blades, the arrangement including a flow-directing structure for each combustor, wherein each flow-directing structure includes a straight path and an annular chamber end, wherein the annular chamber ends together define an annular chamber for delivering the gas flow to the turbine first stage section, wherein gasses flow from respective combustors, through respective straight paths, and into the annular chamber as respective straight gas flows, and wherein the annular chamber is configured to unite the respective straight gas flows along respective shear planes to form a singular annular gas flow, and wherein the annular chamber is configured to impart circumferential motion to the singular annular gas flow before the singular annular gas flow exits the annular chamber to the first row of blades.
    Type: Application
    Filed: April 8, 2009
    Publication date: April 1, 2010
    Applicant: SIEMENS ENERGY, INC.
    Inventors: Jody W. Wilson, Raymond S. Nordlund, Richard C. Charron
  • Publication number: 20090301091
    Abstract: A compressor-less micro gas turbine has a compressed working medium container for maintaining a gas turbine under pressure. A combustion chamber is in fluid communication with the compressed gas container for receiving a gas from the gas container and heating the gas within the combustion chamber to create an expanded gas. A heater heats the combustion chamber to expand the working gas therein. A turbine in fluid communication with the combustion chamber for receiving the expanded gas. The expanded gas drives the turbine. A generator is operatively coupled to the turbine. The turbine provides a mechanical input to the generator causing the generator to produce electricity.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 10, 2009
    Inventors: Darren T. Engle, Jody W. Wilson