Patents by Inventor Joe Bartels

Joe Bartels has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240081893
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices, and more specifically including end effectors that can be incorporated into such devices. Certain end effector embodiments include various vessel cautery devices that have rotational movement as well as cautery and cutting functions while maintaining a relatively compact structure. Other end effector embodiments include various end effector devices that have more than one end effector.
    Type: Application
    Filed: November 1, 2023
    Publication date: March 14, 2024
    Inventors: Shane Farritor, Tom Frederick, Joe Bartels
  • Publication number: 20240041546
    Abstract: Disclosed herein are various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Also disclosed are various medical devices for in vivo medical procedures. Included herein, for example, is a surgical robotic device having an elongate device body, a right robotic arm coupled to a right shoulder assembly, and a left robotic arm coupled to a left shoulder assembly.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 8, 2024
    Inventors: Jack Mondry, Shane Farritor, Eric Markvicka, Thomas Frederick, Joe Bartels
  • Publication number: 20240033022
    Abstract: The various embodiments disclosed herein relate to improved robotic surgical systems, including robotic surgical devices having improved arm components and/or biometric sensors, contact detection systems for robotic surgical devices, gross positioning systems and devices for use in robotic surgical systems, and improved external controllers and consoles.
    Type: Application
    Filed: October 9, 2023
    Publication date: February 1, 2024
    Inventors: Shane Farritor, Thomas Frederick, Joe Bartels, Eric Markvicka, Jack Mondry
  • Patent number: 11832871
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices, and more specifically including end effectors that can be incorporated into such devices. Certain end effector embodiments include various vessel cautery devices that have rotational movement as well as cautery and cutting functions while maintaining a relatively compact structure. Other end effector embodiments include various end effector devices that have more than one end effector.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: December 5, 2023
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Shane Farritor, Tom Frederick, Joe Bartels
  • Patent number: 11819299
    Abstract: Disclosed herein are various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Also disclosed are various medical devices for in vivo medical procedures. Included herein, for example, is a surgical robotic device having an elongate device body, a right robotic arm coupled to a right shoulder assembly, and a left robotic arm coupled to a left shoulder assembly.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: November 21, 2023
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Jack Mondry, Shane Farritor, Eric Markvicka, Thomas Frederick, Joe Bartels
  • Patent number: 11806097
    Abstract: The various embodiments disclosed herein relate to improved robotic surgical systems, including robotic surgical devices having improved arm components and/or biometric sensors, contact detection systems for robotic surgical devices, gross positioning systems and devices for use in robotic surgical systems, and improved external controllers and consoles.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: November 7, 2023
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Shane Farritor, Thomas Frederick, Joe Bartels, Eric Markvicka, Jack Mondry
  • Publication number: 20230092901
    Abstract: Disclosed herein are various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Also disclosed are various medical devices for in vivo medical procedures. Included herein, for example, is a surgical robotic device having an elongate device body, a right robotic arm coupled to a right shoulder assembly, and a left robotic arm coupled to a left shoulder assembly.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 23, 2023
    Inventors: Jack Mondry, Shane Farritor, Eric Markvicka, Thomas Frederick, Joe Bartels
  • Publication number: 20230037962
    Abstract: The various robotic medical devices include robotic devices that are disposed within a body cavity and positioned using a support component disposed through an orifice or opening in the body cavity. Additional embodiments relate to devices having arms coupled to a device body wherein the device has a minimal profile such that the device can be easily inserted through smaller incisions in comparison to other devices without such a small profile. Further embodiments relate to methods of operating the above devices.
    Type: Application
    Filed: October 11, 2022
    Publication date: February 9, 2023
    Inventors: Eric Markvicka, Tom Frederick, Jack Mondry, Joe Bartels, Shane Farritor
  • Patent number: 11529201
    Abstract: Disclosed herein are various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Also disclosed are various medical devices for in vivo medical procedures. Included herein, for example, is a surgical robotic device having an elongate device body, a right robotic arm coupled to a right shoulder assembly, and a left robotic arm coupled to a left shoulder assembly.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: December 20, 2022
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Jack Mondry, Shane Farritor, Eric Markvicka, Thomas Frederick, Joe Bartels
  • Patent number: 11484374
    Abstract: The various robotic medical devices include robotic devices that are disposed within a body cavity and positioned using a support component disposed through an orifice or opening in the body cavity. Additional embodiments relate to devices having arms coupled to a device body wherein the device has a minimal profile such that the device can be easily inserted through smaller incisions in comparison to other devices without such a small profile. Further embodiments relate to methods of operating the above devices.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: November 1, 2022
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Eric Markvicka, Tom Frederick, Jack Mondry, Joe Bartels, Shane Farritor
  • Publication number: 20210307813
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices, and more specifically including end effectors that can be incorporated into such devices. Certain end effector embodiments include various vessel cautery devices that have rotational movement as well as cautery and cutting functions while maintaining a relatively compact structure. Other end effector embodiments include various end effector devices that have more than one end effector.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Inventors: Shane Farritor, Thomas Frederick, Joe Bartels
  • Patent number: 11065050
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices, and more specifically including end effectors that can be incorporated into such devices. Certain end effector embodiments include various vessel cautery devices that have rotational movement as well as cautery and cutting functions while maintaining a relatively compact structure. Other end effector embodiments include various end effector devices that have more than one end effector.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: July 20, 2021
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Shane Farritor, Thomas Frederick, Joe Bartels
  • Publication number: 20200330172
    Abstract: The various embodiments herein relate to robotic surgical systems and devices that use force and/or torque sensors to measure forces applied at various components of the system or device. Certain implementations include robotic surgical devices having one or more force/torque sensors that detect or measure one or more forces applied at or on one or more arms. Other embodiments relate to systems having a robotic surgical device that has one or more sensors and an external controller that has one or more motors such that the sensors transmit information that is used at the controller to actuate the motors to provide haptic feedback to a user.
    Type: Application
    Filed: July 7, 2020
    Publication date: October 22, 2020
    Inventors: Shane Farritor, Tom Frederick, Kearney Lackas, Joe Bartels, Jacob Greenburg
  • Patent number: 10743949
    Abstract: The various embodiments herein relate to robotic surgical systems and devices that use force and/or torque sensors to measure forces applied at various components of the system or device. Certain implementations include robotic surgical devices having one or more force/torque sensors that detect or measure one or more forces applied at or on one or more arms. Other embodiments relate to systems having a robotic surgical device that has one or more sensors and an external controller that has one or more motors such that the sensors transmit information that is used at the controller to actuate the motors to provide haptic feedback to a user.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: August 18, 2020
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Shane Farritor, Tom Frederick, Kearney Lackas, Joe Bartels, Jacob Greenburg
  • Publication number: 20200222132
    Abstract: The various embodiments disclosed herein relate to improved robotic surgical systems, including robotic surgical devices having improved arm components and/or biometric sensors, contact detection systems for robotic surgical devices, gross positioning systems and devices for use in robotic surgical systems, and improved external controllers and consoles.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 16, 2020
    Inventors: Shane Farritor, Thomas Frederick, Joe Bartels, Eric Markvicka, Jack Mondry
  • Patent number: 10603121
    Abstract: The various embodiments disclosed herein relate to improved robotic surgical systems, including robotic surgical devices having improved arm components and/or biometric sensors, contact detection systems for robotic surgical devices, gross positioning systems and devices for use in robotic surgical systems, and improved external controllers and consoles.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: March 31, 2020
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Shane Farritor, Thomas Frederick, Joe Bartels, Eric Markvicka, Jack Mondry
  • Publication number: 20200092533
    Abstract: Energy-efficient epipolar imaging is applied to the ToF domain to significantly expand the versatility of ToF sensors. The described system exhibits 15+ m range outdoors in bright sunlight; robustness to global transport effects such as specular and diffuse inter-reflections; interference-free 3D imaging in the presence of many ToF sensors, even when they are all operating at the same optical wavelength and modulation frequency; and blur- and distortion-free 3D video in the presence of severe camera shake. The described embodiments are broadly applicable in consumer and robotics domains.
    Type: Application
    Filed: January 19, 2018
    Publication date: March 19, 2020
    Inventors: Srinivasa Narasimhan, Supreeth Achar, Kiriakos Kutulakos, Joe Bartels, William Whittaker
  • Publication number: 20200046440
    Abstract: The various robotic medical devices include robotic devices that are disposed within a body cavity and positioned using a support component disposed through an orifice or opening in the body cavity. Additional embodiments relate to devices having arms coupled to a device body wherein the device has a minimal profile such that the device can be easily inserted through smaller incisions in comparison to other devices without such a small profile. Further embodiments relate to methods of operating the above devices.
    Type: Application
    Filed: October 8, 2019
    Publication date: February 13, 2020
    Inventors: Eric Markvicka, Tom Frederick, Jack Mondry, Joe Bartels, Shane Farritor
  • Publication number: 20190350642
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices, and more specifically including end effectors that can be incorporated into such devices. Certain end effector embodiments include various vessel cautery devices that have rotational movement as well as cautery and cutting functions while maintaining a relatively compact structure. Other end effector embodiments include various end effector devices that have more than one end effector.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 21, 2019
    Inventors: Shane Farritor, Thomas Frederick, Joe Bartels
  • Patent number: 10470828
    Abstract: The various robotic medical devices include robotic devices that are disposed within a body cavity and positioned using a support component disposed through an orifice or opening in the body cavity. Additional embodiments relate to devices having arms coupled to a device body wherein the device has a minimal profile such that the device can be easily inserted through smaller incisions in comparison to other devices without such a small profile. Further embodiments relate to methods of operating the above devices.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: November 12, 2019
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Eric Markvicka, Tom Frederick, Jack Mondry, Joe Bartels, Shane Farritor