Patents by Inventor Joe Bloomquist

Joe Bloomquist has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8274120
    Abstract: By recessing drain and source regions, a highly stressed layer, such as a contact etch stop layer, may be formed in the recess in order to enhance the strain generation in the adjacent channel region of a field effect transistor. Moreover, a strained semiconductor material may be positioned in close proximity to the channel region by reducing or avoiding undue relaxation effects of metal silicides, thereby also providing enhanced efficiency for the strain generation. In some aspects, both effects may be combined to obtain an even more efficient strain-inducing mechanism.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: September 25, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Andy Wei, Thorsten Kammler, Jan Hoentschel, Manfred Horstmann, Peter Javorka, Joe Bloomquist
  • Patent number: 8138571
    Abstract: By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: March 20, 2012
    Assignee: Globalfoundries Inc.
    Inventors: Christoph Schwan, Joe Bloomquist, Peter Javorka, Manfred Horstmann, Sven Beyer, Markus Forsberg, Frank Wirbeleit, Karla Romero
  • Patent number: 7863171
    Abstract: By introducing a atomic species, such as carbon, fluorine and the like, into the drain and source regions, as well as in the body region, the junction leakage of SOI transistors may be significantly increased, thereby providing an enhanced leakage path for accumulated minority charge carriers. Consequently, fluctuations of the body potential may be significantly reduced, thereby improving the overall performance of advanced SOI devices. In particular embodiments, the mechanism may be selectively applied to threshold voltage sensitive device areas, such as static RAM areas.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: January 4, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jan Hoentschel, Andy Wei, Joe Bloomquist, Manfred Horstmann
  • Publication number: 20100155850
    Abstract: By recessing drain and source regions, a highly stressed layer, such as a contact etch stop layer, may be formed in the recess in order to enhance the strain generation in the adjacent channel region of a field effect transistor. Moreover, a strained semiconductor material may be positioned in close proximity to the channel region by reducing or avoiding undue relaxation effects of metal silicides, thereby also providing enhanced efficiency for the strain generation. In some aspects, both effects may be combined to obtain an even more efficient strain-inducing mechanism.
    Type: Application
    Filed: February 23, 2010
    Publication date: June 24, 2010
    Inventors: Andy Wei, Thorsten Kammler, Jan Hoentschel, Manfred Horstmann, Peter Javorka, Joe Bloomquist
  • Patent number: 7732291
    Abstract: By selectively performing a pre-amorphization implantation process in logic areas and memory areas, the negative effect of the interaction between stressed overlayers and dislocation defects may be avoided or at least significantly reduced in the memory areas, thereby increasing production yield and stability of the memory areas.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: June 8, 2010
    Assignee: Globalfoundries Inc.
    Inventors: Joe Bloomquist, Peter Javorka, Manfred Horstmann, Gert Burbach
  • Patent number: 7696052
    Abstract: By recessing drain and source regions, a highly stressed layer, such as a contact etch stop layer, may be formed in the recess in order to enhance the strain generation in the adjacent channel region of a field effect transistor. Moreover, a strained semiconductor material may be positioned in close proximity to the channel region by reducing or avoiding undue relaxation effects of metal silicides, thereby also providing enhanced efficiency for the strain generation. In some aspects, both effects may be combined to obtain an even more efficient strain-inducing mechanism.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: April 13, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Andy Wei, Thorsten Kammler, Jan Hoentschel, Manfred Horstmann, Peter Javorka, Joe Bloomquist
  • Publication number: 20090236667
    Abstract: By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
    Type: Application
    Filed: April 7, 2009
    Publication date: September 24, 2009
    Inventors: Christoph Schwan, Joe Bloomquist, Peter Javorka, Manfred Horstmann, Sven Beyer, Markus Forsberg, Frank Wirbeleit, Karla Romero
  • Patent number: 7556996
    Abstract: A method of forming a field effect transistor comprises providing a substrate comprising, at least on a surface thereof, a first semiconductor material. A recess is formed in the substrate. The recess is filled with a second semiconductor material. The second semiconductor material has a different lattice constant than the first semiconductor material. A gate electrode is formed over the recess filled with the second semiconductor material.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: July 7, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christoph Schwan, Joe Bloomquist, Kai Frohberg, Manfred Horstmann
  • Patent number: 7547610
    Abstract: By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: June 16, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christoph Schwan, Joe Bloomquist, Peter Javorka, Manfred Horstmann, Sven Beyer, Markus Forsberg, Frank Wirbeleit, Karla Romero
  • Publication number: 20080299733
    Abstract: A method of forming a semiconductor structure comprises providing a semiconductor substrate. A feature having a side surface and a top surface is formed over the substrate. A material layer is formed over the substrate. The material layer covers at least the side surface of the feature. An ion implantation process is performed to create an ion-implanted portion in the material layer. An etch process adapted to remove the ion-implanted portion at a greater etch rate than other portions of the material layer is performed.
    Type: Application
    Filed: January 4, 2008
    Publication date: December 4, 2008
    Inventors: Patrick Press, Frank Wirbeleit, Joe Bloomquist, Kai Frohberg, Thomas Feudel
  • Publication number: 20080079085
    Abstract: By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
    Type: Application
    Filed: April 12, 2007
    Publication date: April 3, 2008
    Inventors: Christoph Schwan, Joe Bloomquist, Peter Javorka, Manfred Horstmann, Sven Beyer, Markus Forsberg, Frank Wirbeleit, Karla Romero
  • Publication number: 20080079039
    Abstract: A method of forming a field effect transistor comprises providing a substrate comprising, at least on a surface thereof, a first semiconductor material. A recess is formed in the substrate. The recess is filled with a second semiconductor material. The second semiconductor material has a different lattice constant than the first semiconductor material. A gate electrode is formed over the recess filled with the second semiconductor material.
    Type: Application
    Filed: April 18, 2007
    Publication date: April 3, 2008
    Inventors: Christoph Schwan, Joe Bloomquist, Kai Frohberg, Manfred Horstmann
  • Publication number: 20070281472
    Abstract: By performing a laser-based or flash-based anneal process after silicidation, the degree of dopant activation with reduced diffusion activity may be accomplished, while the characteristics of the metal silicide may be improved or the complexity for manufacturing the same may be reduced.
    Type: Application
    Filed: January 11, 2007
    Publication date: December 6, 2007
    Inventors: Patrick Press, Thomas Feudel, Joe Bloomquist, Manfred Horstmann
  • Publication number: 20070254444
    Abstract: By selectively performing a pre-amorphization implantation process in logic areas and memory areas, the negative effect of the interaction between stressed overlayers and dislocation defects may be avoided or at least significantly reduced in the memory areas, thereby increasing production yield and stability of the memory areas.
    Type: Application
    Filed: December 8, 2006
    Publication date: November 1, 2007
    Inventors: Joe Bloomquist, Peter Javorka, Manfred Horstmann, Gert Burbach
  • Publication number: 20070252205
    Abstract: By introducing a atomic species, such as carbon, fluorine and the like, into the drain and source regions, as well as in the body region, the junction leakage of SOI transistors may be significantly increased, thereby providing an enhanced leakage path for accumulated minority charge carriers. Consequently, fluctuations of the body potential may be significantly reduced, thereby improving the overall performance of advanced SOI devices. In particular embodiments, the mechanism may be selectively applied to threshold voltage sensitive device areas, such as static RAM areas.
    Type: Application
    Filed: December 13, 2006
    Publication date: November 1, 2007
    Inventors: Jan Hoentschel, Andy Wei, Joe Bloomquist, Manfred Horstmann
  • Publication number: 20070228482
    Abstract: By recessing drain and source regions, a highly stressed layer, such as a contact etch stop layer, may be formed in the recess in order to enhance the strain generation in the adjacent channel region of a field effect transistor. Moreover, a strained semiconductor material may be positioned in close proximity to the channel region by reducing or avoiding undue relaxation effects of metal silicides, thereby also providing enhanced efficiency for the strain generation. In some aspects, both effects may be combined to obtain an even more efficient strain-inducing mechanism.
    Type: Application
    Filed: November 9, 2006
    Publication date: October 4, 2007
    Inventors: Andy Wei, Thorsten Kammler, Jan Hoentschel, Manfred Horstmann, Peter Javorka, Joe Bloomquist