Patents by Inventor Joe D. Allison

Joe D. Allison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030129121
    Abstract: The present invention includes an integrated process for the production of carbon filaments, comprising converting a portion of hydrocarbons to alkenes via oxidative dehydrogenation and further converting a portion of the alkenes to carbon filaments via contact with a metal catalyst. A portion of unconverted hydrocarbons remaining after oxidative dehydrogenation may also be further converted to carbon filaments via contact with the metal catalyst. The conversion of hydrocarbons to alkenes via oxidative dehydrogenation and further conversion of the alkenes and unconverted hydrocarbons to carbon filaments via contact with a metal catalyst may be carried out in the same or separate reactor vessels. A plurality of reactor vessels arranged in parallel may be used for the conversion of the alkenes and unconverted hydrocarbons to carbon filaments.
    Type: Application
    Filed: October 1, 2002
    Publication date: July 10, 2003
    Applicant: Conoco Inc.
    Inventors: Joe D. Allison, Lisa M. Carmichael, Larry M. Meyer, Kenneth M. York, Sriram Ramani
  • Publication number: 20030119658
    Abstract: This invention provides a method for recovering rhenium oxide from a material containing rhenium by itself or rhenium in combination with some other element, such as an element catalytically active for a catalytic process, such as hydrogenation, oxidation, reforming, and hydrocracking. The method includes conversion of rhenium to a sublimable oxide via oxidation, heating in an oxidizing atmosphere to sublime the oxide as a volatized oxide, and then isolation of rhenium from the volatized oxide.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 26, 2003
    Applicant: ConocoPhillips Company
    Inventors: Joe D. Allison, Nithya Srinivasan, Sriram Ramani
  • Patent number: 6579510
    Abstract: A method, system and catalysts for improving the yield of syngas from the catalytic partial oxidation of methane or other light hydrocarbons is disclosed. The increase in yield and selectivity for CO and H2 products results at least in part from the substitution of H2S partial oxidation to elemental sulfur and water for the combustion of light hydrocarbon to CO2 and water.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: June 17, 2003
    Inventors: Alfred E. Keller, Joe D. Allison, Sriram Ramani
  • Publication number: 20030083198
    Abstract: A method and apparatus for converting a hydrocarbon and oxygen containing gas feed stream to a product stream, such as syngas, including catalytically partially oxidizing the hydrocarbon feed stream over a catalyst bed. The catalyst bed has a downstream section which is less resistant to flow than the upstream section.
    Type: Application
    Filed: October 4, 2002
    Publication date: May 1, 2003
    Applicant: Conoco Inc.
    Inventors: Bang Chen Xu, Sriram Ramani, Kevin L. Ricketson, Gloria I. Straguzzi, Larry D. Swinney, Joe D. Allison
  • Patent number: 6552243
    Abstract: A molybdenum-loaded crystalline aluminosilicate molecular sieve that exhibits the MFI crystal structure and has a silica-to-alumina ratio of about 50:1 is useful for aromatizing a hydrocarbon feed stream. The crystalline aluminosilicate preferably has an external surface acidity selectively passivated by means of an amorphous silica layer. A process for the aromatization of methane comprises a one- or multi-step process that contacts a feed stream comprising at least methane with a catalyst composition comprising the preferred molecular sieve, at hydrocarbon conversion conditions that include a temperature of 600-800° C., a pressure of less than 5 atmospheres absolute and a Weight Hourly Space Velocity (WHSV) of 0.1-10 h−1, with the external surface acidity of the crystalline aluminosilicate preferably selectively passivated by an amorphous silica layer. C6-plus aromatic hydrocarbons are preferably recovered from the process by means of an intermediate separation step.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: April 22, 2003
    Assignee: Conoco Phillips Company
    Inventors: Joe D. Allison, Stephan Basso, Marc LeDoux, Cuong Pham-Huu, Harold A. Wright
  • Publication number: 20030070808
    Abstract: The present system may be used to hydroprocess heavy crude oil at the wellhead, effectively lowering the viscosity and removing contaminants such as sulfur, nitrogen and metal contents. The hydrogen source for hydroprocessing is the separated hydrogen product from the methane produced from a syngas plant.
    Type: Application
    Filed: May 21, 2002
    Publication date: April 17, 2003
    Applicant: Conoco Inc.
    Inventor: Joe D. Allison
  • Publication number: 20030065235
    Abstract: A catalyst useful for the production of olefins from alkanes via oxidative dehydrogenation (ODH) is disclosed. The catalyst includes a base metal, metal oxide, or combination thereof and a refractory support. The base metal is selected from the group containing Group IB-VIIB metals, Group IIIA-VA metals, Lanthanide metals, iron, cobalt, and nickel. The metal oxide is selected from the group containing alumina, stabilized aluminas, zirconia, stabilized zirconias, titania, ytteria, silica, niobia, and vanadia. The catalyst does not contain any precious metals; it is activated by higher preheat temperatures. As a result, similar conversions are achieved at a considerably lower catalyst cost.
    Type: Application
    Filed: April 8, 2002
    Publication date: April 3, 2003
    Inventors: Joe D. Allison, Lisa M. Budin
  • Publication number: 20030050349
    Abstract: The present invention relates to a method for removing a sulfur containing catalyst poison from a feedstock. Benefits from removing catalyst poisoning sulfur compounds in a feedstock include upgrading the quality of the various petroleum fractions and prolonging the life of the catalyst. A preferred embodiment of the present invention includes adding a sacrificial metal to a Fischer-Tropsch reactor. The role of the sacrificial metal is adsorption of the sulfur-containing species that may deactivate or poison the catalyst.
    Type: Application
    Filed: May 24, 2002
    Publication date: March 13, 2003
    Applicant: Conoco Inc.
    Inventor: Joe D. Allison
  • Publication number: 20030012711
    Abstract: An apparatus and method is disclosed for producing hydrocarbons according to the Fischer-Tropsch process. The apparatus comprises a catalytic distillation reactor where reactants are fed into the catalytic distillation reactor to undergo catalytic reaction to form hydrocarbons. Physical separation of the unreacted materials and products occurs simultaneously in the catalytic distillation reactor. The catalytic distillation reactor is divided into reaction chambers so as to optimize control of the reaction and the distribution of hydrocarbon products. A monolith, such as a foam monolith or a honeycomb monolith, preferably a honeycomb monolith, is disposed with said reaction chamber serves both as catalyst support and as distillation packing material. A honeycomb monolith preferably includes channels having an axis disposed at a nonzero angle with respect to the axis of a reaction chamber containing the honeycomb monolith.
    Type: Application
    Filed: May 16, 2002
    Publication date: January 16, 2003
    Applicant: Conoco Inc.
    Inventors: Todd H. Harkins, Kenneth M. York, Joe D. Allison, Harold A. Wright
  • Publication number: 20030008929
    Abstract: A method a making a catalyst, preferably a Fischer-Tropsch catalyst, includes the use of a surfactant. The surfactant is preferably a non-ionic surfactant, or alternatively, a cationic surfactant. The catalyst includes support material and catalyst material. The catalyst material preferably includes at least one Fischer-Tropsch metal, more preferably cobalt. The surfactant is preferably added to a solution containing a catalyst material in an amount sufficient to improve a measure of the activity of a catalyst containing the catalyst material, such as the CO conversion, the methane selectivity, the C5+ productivity, or catalyst life. A method for producing hydrocarbons includes contacting a catalyst made as described above with hydrogen and carbon monoxide.
    Type: Application
    Filed: May 31, 2002
    Publication date: January 9, 2003
    Applicant: Conoco Inc.
    Inventor: Joe D. Allison
  • Publication number: 20020198429
    Abstract: A catalyst bed is made of a monolith having a plurality of pores extending through the monolith, the pores forming tortuous flow paths through the monolith. The tortuous flow paths are obtained by modifying the monolith channels with turbulence-inducing objects or means. Catalyst is disposed on the wall surfaces formed by the pores. Reactants are passed through the tortuous flow paths creating turbulent flow thereby increasing the contact of the reactants with the catalyst on the wall surfaces and the mixing across the reactant stream.
    Type: Application
    Filed: May 16, 2002
    Publication date: December 26, 2002
    Applicant: Conoco Inc.
    Inventors: Sriram Ramani, Joe D. Allison, Richard Delgado
  • Publication number: 20020177741
    Abstract: An apparatus and method is disclosed for producing alcohols, particularly methanol, according to an alcohol synthesis process. The apparatus comprises a catalytic distillation reactor where reactants are fed into the catalytic distillation reactor to undergo catalytic reaction to form methanol. Methanol production beyond the thermodynamic limit is achieved in the apparatus through use of multiple distillation stages, preferably at least three.
    Type: Application
    Filed: May 16, 2002
    Publication date: November 28, 2002
    Applicant: Conoco Inc.
    Inventors: Joe D. Allison, Harold A. Wright, Todd H. Harkins, Doug S. Jack
  • Publication number: 20020134706
    Abstract: A process for removing sulfur from a H2S-containing gas stream is disclosed. A preferred embodiment of the process comprises incorporating a short contact time catalytic partial oxidation reactor, a cooling zone, and a condenser into a conventional refinery or gas plant process, such as a natural gas desulfurizer, a hydrotreater, coker or fluid catalytic cracker, in which sulfur removal is needed in order to produce a more desirable product. An H2S-containing gas stream is fed into a short contact time reactor where the H2S is partially oxidized over a suitable catalyst in the presence of O2 to elemental sulfur and water.
    Type: Application
    Filed: December 18, 2001
    Publication date: September 26, 2002
    Inventors: Alfred E. Keller, Joe D. Allison, Sriram Ramani, Terry D. Pruitt
  • Publication number: 20020131928
    Abstract: An apparatus and process for recovering elemental sulfur from a H2S-containing waste gas stream are disclosed, along with a method of making a preferred catalyst for catalyzing the process. The apparatus preferably comprises a short contact time catalytic partial oxidation reactor, a cooling zone, and a sulfur condenser. According to a preferred embodiment of the process, a mixture of H2S and O2 contacts the catalyst very briefly (i.e, less than about 200 milliseconds). Some preferred catalyst devices comprise a reduced metal such as Pt, Rh, or Pt—Rh, and a lanthanide metal oxide, or a pre-carbided form of the metal. The preferred apparatus and process are capable of operating at superatmospheric pressure and improve the efficiency of converting H2S to sulfur, which will reduce the cost and complexity of construction and operation of a sulfur recovery plant used for waste gas cleanup.
    Type: Application
    Filed: December 18, 2001
    Publication date: September 19, 2002
    Inventors: Alfred E. Keller, Sriram Ramani, Joe D. Allison, Terry D. Pruitt
  • Publication number: 20020115730
    Abstract: Lanthanide-promoted rhodium-containing supported catalysts that are active for catalyzing the net partial oxidation of methane to CO and H2 are disclosed, along with their manner of making and high efficiency processes for producing synthesis gas employing the new catalysts. A preferred catalyst comprises highly dispersed, high surface area rhodium on a granular zirconia support with an intermediate coating of a lanthanide metal and/or oxide thereof and is thermally conditioned during catalyst preparation. In a preferred syngas production process a stream of methane-containing gas and O2 is passed over a thermally conditioned, high surface area Rh/Sm/zirconia granular catalyst in a short contact time reactor to produce a mixture of carbon monoxide and hydrogen.
    Type: Application
    Filed: September 5, 2001
    Publication date: August 22, 2002
    Inventors: Joe D. Allison, Larry D. Swinney, Tianyan Niu, Kevin L. Ricketson, Daxiang Wang, Sriram Ramani, Gloria I. Straguzzi, David M. Minahan, Harold A. Wright, Baili Hu
  • Publication number: 20020110521
    Abstract: A method, system and catalysts for improving the yield of syngas from the catalytic partial oxidation of methane or other light hydrocarbons is disclosed. The increase in yield and selectivity for CO and H2 products results at least in part from the substitution of H2S partial oxidation to elemental sulfur and water for the combustion of light hydrocarbon to CO2 and water.
    Type: Application
    Filed: December 20, 2000
    Publication date: August 15, 2002
    Inventors: Alfred E. Keller, Joe D. Allison, Sriram Ramani
  • Publication number: 20020111262
    Abstract: A method for producing small spherical particles that are especially useful as catalysts and catalyst supports employed in chemical processes is disclosed. According to some embodiments, the method includes impregnating a porous support with a metal or metal oxide and dissolving the support to release spherical particles. In certain embodiments the support that is employed in the method comprises a number of spherical voids which determine the size of the spherical particles, and preferably have micrometer range diameters. One embodiment of an attrition resistant Fischer-Tropsch catalyst comprises a plurality of micrometer size spherical metal and/or metal oxide particles that are prepared according to the above-described method.
    Type: Application
    Filed: September 14, 2001
    Publication date: August 15, 2002
    Inventor: Joe D. Allison
  • Publication number: 20020072642
    Abstract: A molybdenum-loaded crystalline aluminosilicate molecular sieve that exhibits the MFI crystal structure and has a silica-to-alumina ratio of about 50:1 is useful for aromatizing a hydrocarbon feed stream. The crystalline aluminosilicate preferably has an external surface acidity selectively passivated by means of an amorphous silica layer. A process for the aromatization of methane comprises a one- or multi-step process that contacts a feed stream comprising at least methane with a catalyst composition comprising the preferred molecular sieve, at hydrocarbon conversion conditions that include a temperature of 600-800° C., a pressure of less than 5 atmospheres absolute and a Weight Hourly Space Velocity (WHSV) of 0.1-10 h−1, with the external surface acidity of the crystalline aluminosilicate preferably selectively passivated by an amorphous silica layer. C6-plus aromatic hydrocarbons are preferably recovered from the process by means of an intermediate separation step.
    Type: Application
    Filed: July 27, 2001
    Publication date: June 13, 2002
    Inventors: Joe D. Allison, Stephan Basso, Marc LeDoux, Cuong Pham-Huu, Harold A. Wright
  • Publication number: 20020037937
    Abstract: A process is disclosed for the hydrogenation of carbon monoxide. The process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst system in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream, preferably comprising hydrocarbons. In accordance with this invention the catalyst system used in the process includes at least one catalytic material for Fischer-Tropsch reactions (e.g., iron, cobalt, nickel and/or ruthenium), preferably comprising cobalt, and a support comprising aluminum borate. The catalyst system can be prepared by impregnating alumina with a boron-containing composition to form an aluminum borate support and applying a Fischer-Tropsch catalytically active material to the aluminum borate to form a supported catalyst system.
    Type: Application
    Filed: July 3, 2001
    Publication date: March 28, 2002
    Inventors: Ajoy P. Raje, Joe D. Allison, Kevin L. Coy
  • Patent number: 5160413
    Abstract: Micro-distillation apparatus is provided for analyzing acidic anions in which the acidic anion sample is placed in a lower elongated member in water containing an acidifying material, upon heating the acidic anion leaves the lower member as a gas, passing through a permeable membrane into an upper elongated member containing a material which converts the acidic anion to a salt and the salt is recovered for analysis. The micro-distillation apparatus is sized so that a number of samples can be heated in a small heating member, such as a hot block heater.
    Type: Grant
    Filed: August 16, 1990
    Date of Patent: November 3, 1992
    Assignee: Conoco Inc.
    Inventor: Joe D. Allison