Patents by Inventor Joe E. Kiani

Joe E. Kiani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10588518
    Abstract: A congenital heart disease monitor utilizes a sensor capable of emitting multiple wavelengths of optical radiation into a tissue site and detecting the optical radiation after attenuation by pulsatile blood flowing within the tissue site. A patient monitor is capable of receiving a sensor signal corresponding to the detected optical radiation and calculating at least one physiological parameter in response. The physiological parameter is measured at a baseline site and a comparison site and a difference in these measurements is calculated. A potential congenital heart disease condition in indicated according to the measured physiological parameter at each of the sites or the calculated difference in the measured physiological parameter between the sites or both.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: March 17, 2020
    Assignee: MASIMO CORPORATION
    Inventor: Massi Joe E. Kiani
  • Patent number: 10588553
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: March 17, 2020
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10582886
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: March 10, 2020
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20200060628
    Abstract: An optical based patient monitoring system employing an optical sensor and providing an indication of an optical change which does not correlate to a change in a physiological blood parameter and based on that indication, providing a care provider an indication of a condition of a patient. The optical based patient monitoring system providing the indication of the patient condition in relation to a patient using an IV setup.
    Type: Application
    Filed: July 1, 2019
    Publication date: February 27, 2020
    Inventors: Ammar Al-Ali, John Graybeal, Massi Joe E. Kiani, Michael Petterson, Chris Kilpatrick
  • Publication number: 20200060629
    Abstract: A first medical device can receive a physiological parameter value from a second medical device. The second physiological parameter value may be formatted according to a protocol not used by the first medical device such that the first medical device is not able to process the second physiological parameter value to produce a displayable output value. The first medical device can pass the physiological parameter data from the first medical device to a separate translation module and receive translated parameter data from the translation module at the first medical device. The translated parameter data can be processed for display by the first medical device. The first medical device can output a value from the translated parameter data for display on the first medical device or an auxiliary device.
    Type: Application
    Filed: October 31, 2019
    Publication date: February 27, 2020
    Inventors: Bilal Muhsin, Ammar Al-Ali, Massi Joe E. Kiani, Peter Scott Housel
  • Patent number: 10555678
    Abstract: A blood pressure measurement system is provided that includes an inflatable cuff, a valve assembly and chamber assembly. The chamber assembly can house a gas canister for providing gas to the inflatable cuff. The valve assembly can include a valve having a high pressure cavity, a low pressure cavity, and a channel providing a gas pathway between the high pressure cavity and the low pressure cavity. The valve assembly can further include a channel cover and spring in the high pressure cavity. The spring can exert a force on the channel cover to create a seal between the high pressure cavity and the channel. The valve assembly can further include a rod extending through the channel and exerting a force on the channel cover to create a gas pathway between the high pressure cavity and the channel.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: February 11, 2020
    Assignee: Masimo Corporation
    Inventors: Cristiano Dalvi, Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Hung Vo
  • Publication number: 20200037891
    Abstract: A non-invasive, optical-based physiological monitoring system is disclosed. In an embodiment, the non-invasive, optical-based physiological monitoring system comprises an emitter configured to emit light into a tissue site of a living patient; a detector configured to detect the emitted light after attenuation by the tissue site and output a sensor signal responsive to the detected light; and a processor configured to determine, based on the sensor signal, a first physiological parameter indicative of a level of pain of the patient.
    Type: Application
    Filed: July 25, 2019
    Publication date: February 6, 2020
    Inventors: Massi Joe E. Kiani, Michael O'Reilly
  • Publication number: 20200029867
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: October 7, 2019
    Publication date: January 30, 2020
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20200015716
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: June 21, 2019
    Publication date: January 16, 2020
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20200000415
    Abstract: A multi-parameter patient monitoring device rack can dock a plurality of patient monitor modules and can communicate with a separate display unit. A signal processing unit can be incorporated into the device rack. A graphics processing unit can be attached to the display unit. The device rack and the graphic display unit can have improved heat dissipation and drip-proof features. The multi-parameter patient monitoring device rack can provide interchangeability and versatility to a multi-parameter patient monitoring system by allowing use of different display units and monitoring of different combinations of parameters. A dual-use patient monitor module can have its own display unit configured for displaying one or more parameters when used as a stand-alone device, and can be docked into the device rack when a handle on the module is folded down.
    Type: Application
    Filed: May 10, 2019
    Publication date: January 2, 2020
    Inventors: Nicholas Evan Barker, Chad A. DeJong, Kirby Clark Dotson, Ammar Al-Ali, Bilal Muhsin, Sujin Hwang, Massi Joe E. Kiani
  • Publication number: 20200000338
    Abstract: A cloud-based physiological monitoring system has a sensor in communications with a living being so as to generate a data stream generally responsive to a physiological condition of the living being. A monitor receives the data stream from the sensor and transmits the data stream to a cloud server. The cloud server processes the data stream so as to derive physiological parameters having values responsive to the physiological condition. The cloud server derives a medical index based upon a combination of the physiological parameters. The cloud server communicates the medical index to the monitor, which displays the medical index.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 2, 2020
    Inventors: Marcelo M. Lamego, Abraham Mazda Kiani, Don Sanders, Jeroen Poeze, Massi Joe E Kiani, Anthony Amir Davia
  • Patent number: 10512436
    Abstract: A first medical device can receive a physiological parameter value from a second medical device. The second physiological parameter value may be formatted according to a protocol not used by the first medical device such that the first medical device is not able to process the second physiological parameter value to produce a displayable output value. The first medical device can pass the physiological parameter data from the first medical device to a separate translation module and receive translated parameter data from the translation module at the first medical device. The translated parameter data can be processed for display by the first medical device. The first medical device can output a value from the translated parameter data for display on the first medical device or an auxiliary device.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: December 24, 2019
    Assignee: Masimo Corporation
    Inventors: Bilal Muhsin, Ammar Al-Ali, Massi Joe E. Kiani, Peter Scott Housel
  • Publication number: 20190374139
    Abstract: An overdose of opioids can cause the user to stop breathing, resulting in death. A physiological monitoring system monitors respiration based on oxygen saturation readings from a fingertip pulse oximeter in communication with a smart mobile device and sends opioid monitoring information from the smart mobile device to an opioid overdose monitoring service.
    Type: Application
    Filed: June 5, 2019
    Publication date: December 12, 2019
    Inventors: Massi Joe E. Kiani, Bilal Muhsin, Ammar Al-Ali, Keith Ward Indorf, Omar Ahmed, Jerome Novak, Walter M. Weber
  • Publication number: 20190374173
    Abstract: An overdose of opioids can cause the user to stop breathing, resulting in death. A physiological monitoring system monitors respiration based on oxygen saturation readings from a fingertip pulse oximeter in communication with a smart mobile device and sends opioid monitoring information from the smart mobile device to an opioid overdose monitoring service.
    Type: Application
    Filed: June 5, 2019
    Publication date: December 12, 2019
    Inventors: Massi Joe E. Kiani, Bilal Muhsin, Ammar Al-Ali, Keith Ward Indorf, Omar Ahmed, Jerome Novak, Walter M. Weber
  • Publication number: 20190374135
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 12, 2019
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20190374713
    Abstract: An overdose of opioids can cause the user to stop breathing, resulting in death. A physiological monitoring system monitors respiration based on oxygen saturation readings from a fingertip pulse oximeter in communication with a smart mobile device and sends opioid monitoring information from the smart mobile device to an opioid overdose monitoring service. The opioid overdose monitoring service notifies a first set of contacts when the opioid monitoring information indicates a non-distress stats and notifies a second set of contact when the opioid monitoring information indicates an overdose event. The notification can be a phone call or text message to a specified person, emergency personnel, or first responders, and can include the location of the smart mobile device. The smart mobile device can also include the location of the nearest treatment center having emergency medication used in treating opioid overdose, such as naloxone.
    Type: Application
    Filed: June 5, 2019
    Publication date: December 12, 2019
    Inventors: Massi Joe E. Kiani, Bilal Muhsin, Ammar Al-Ali, Keith Ward Indorf, Omar Ahmed, Jerome Novak, Walter M. Weber
  • Publication number: 20190365294
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20190365295
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 5, 2019
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20190357813
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: August 7, 2019
    Publication date: November 28, 2019
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20190357812
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: August 7, 2019
    Publication date: November 28, 2019
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen