Patents by Inventor Joe Feng

Joe Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10424687
    Abstract: A photovoltaic device includes an intrinsic layer having two or more sublayers. The sublayers are intentionally deposited to include complementary concave and convex shapes. The sum of these layers resulting in a relatively flat surface for deposition of n- or p-doped layers. The photovoltaic device is optionally bifacial.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: September 24, 2019
    Assignee: Aptos Energy, LLC
    Inventors: Thanh Ngoc Pham, Joe Feng
  • Patent number: 10205038
    Abstract: A photovoltaic device includes an intrinsic layer having two or more sublayers. The sublayers are intentionally deposited to include complementary concave and convex shapes. The sum of these layers resulting in a relatively flat surface for deposition of n- or p-doped layers. The photovoltaic device is optionally bifacial.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: February 12, 2019
    Assignee: Aptos Energy, LLC
    Inventors: Thanh Ngoc Pham, Joe Feng
  • Publication number: 20180166597
    Abstract: A photovoltaic device includes an intrinsic layer having two or more sublayers. The sublayers are intentionally deposited to include complementary concave and convex shapes. The sum of these layers resulting in a relatively flat surface for deposition of n- or p-doped layers. The photovoltaic device is optionally bifacial.
    Type: Application
    Filed: September 16, 2016
    Publication date: June 14, 2018
    Inventors: Thanh Ngoc Pham, Joe Feng
  • Patent number: 9972743
    Abstract: A photovoltaic device includes an intrinsic layer having two or more sublayers. The sublayers are intentionally deposited to include complementary concave and convex shapes. The sum of these layers resulting in a relatively flat surface for deposition of n- or p-doped layers. The photovoltaic device is optionally bifacial.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: May 15, 2018
    Assignee: Aptos Energy, LLC
    Inventors: Thanh Ngoc Pham, Joe Feng
  • Publication number: 20180040759
    Abstract: A photovoltaic device includes an intrinsic layer having two or more sublayers. The sublayers are intentionally deposited to include complementary concave and convex shapes. The sum of these layers resulting in a relatively flat surface for deposition of n- or p-doped layers. The photovoltaic device is optionally bifacial.
    Type: Application
    Filed: September 12, 2016
    Publication date: February 8, 2018
    Applicant: Aptos Energy, LLC
    Inventors: Thanh Ngoc Pham, Joe Feng
  • Patent number: 7070657
    Abstract: This invention provides a stable process for depositing an antireflective layer. Helium gas is used to lower the deposition rate of plasma-enhanced silane oxide, silane oxynitride, and silane nitride processes. Helium is also used to stabilize the process, so that different films can be deposited. The invention also provides conditions under which process parameters can be controlled to produce antireflective layers with varying optimum refractive index, absorptive index, and thickness for obtaining the desired optical behavior.
    Type: Grant
    Filed: October 15, 1999
    Date of Patent: July 4, 2006
    Assignee: Applied Materials Inc.
    Inventors: David Cheung, Joe Feng, Judy H. Huang, Wai-Fan Yau
  • Patent number: 6951826
    Abstract: The present invention generally provides a process for depositing silicon carbide using a silane-based material with certain process parameters that is useful for forming a suitable ARC for IC applications. Under certain process parameters, a fixed thickness of the silicon carbide may be used on a variety of thicknesses of underlying layers. The thickness of the silicon carbide ARC is substantially independent of the thickness of the underlying layer for a given reflectivity, in contrast to the typical need for adjustments in the ARC thickness for each underlying layer thickness to obtain a given reflectivity. Another aspect of the invention includes a substrate having a silicon carbide anti-reflective coating, comprising a dielectric layer deposited on the substrate and a silicon carbide anti-reflective coating having a dielectric constant of less than about 7.0 and preferably about 6.0 or less.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: October 4, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Christopher Bencher, Joe Feng, Mei-Yee Shek, Chris Ngai, Judy Huang
  • Publication number: 20050181623
    Abstract: The present invention generally provides a process for depositing silicon carbide using a silane-based material with certain process parameters that is useful for forming a suitable ARC for IC applications. Under certain process parameters, a fixed thickness of the silicon carbide may be used on a variety of thicknesses of underlying layers. The thickness of the silicon carbide ARC is substantially independent of the thickness of the underlying layer for a given reflectivity, in contrast to the typical need for adjustments in the ARC thickness for each underlying layer thickness to obtain a given reflectivity. Another aspect of the invention includes a substrate having a silicon carbide anti-reflective coating, comprising a dielectric layer deposited on the substrate and a silicon carbide anti-reflective coating having a dielectric constant of less than about 7.0 and preferably about 6.0 or less.
    Type: Application
    Filed: October 9, 2003
    Publication date: August 18, 2005
    Inventors: Christopher Bencher, Joe Feng, Mei-Yee Shek, Chris Ngai, Judy Huang
  • Patent number: 6797646
    Abstract: Embodiments of the present invention provide nitrogen doping of a fluorinated silicate glass (FSG) layer to improve adhesion between the nitrogen-containing FSG layer and other layers such as barrier layers. In some embodiments, a nitrogen-containing FSG layer is deposited on a substrate in a process chamber by supplying a gaseous mixture to the process chamber. The gaseous mixture comprises a silicon-containing gas, a fluorine-containing gas, an oxygen-containing gas, and a nitrogen-containing gas. Energy is provided to the gaseous mixture to deposit the nitrogen-containing FSG layer onto the substrate. A plasma may be formed from the gaseous mixture to deposit the layer. In some embodiments, an FSG film that has been formed is doped with nitrogen by a plasma treatment using a nitrogen-containing chemistry. For example, nitrogen ashing in a damascene process may introduce nitrogen dopants into the surface of the FSG layer.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: September 28, 2004
    Assignee: Applied Materials Inc.
    Inventors: Christopher Ngai, Christopher D. Bencher, Joe Feng, Peter Chen
  • Patent number: 6656840
    Abstract: A method for forming a microelectronics device is disclosed. In one embodiment, the method includes depositing a conductive structure on a substrate. A first layer comprising silicon and nitrogen is formed on the substrate. A second layer comprising silicon and nitrogen is then formed on the first layer. The nitrogen to silicon ratio in the first layer is greater than the nitrogen to silicon ratio in the second layer.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: December 2, 2003
    Assignee: Applied Materials Inc.
    Inventors: Nagarajan Rajagopalan, Joe Feng, Christopher S Ngai, Meiyee (Maggie Le) Shek, Suketu A Parikh, Linh H Thanh
  • Publication number: 20030203614
    Abstract: A method for forming a microelectronics device is disclosed. In one embodiment, the method includes depositing a conductive structure on a substrate. A first layer comprising silicon and nitrogen is formed on the substrate. A second layer comprising silicon and nitrogen is then formed on the first layer. The nitrogen to silicon ratio in the first layer is greater than the nitrogen to silicon ratio in the second layer.
    Type: Application
    Filed: April 29, 2002
    Publication date: October 30, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Joe Feng, Christopher S. Ngai, Meiyee Shek, Suketu A. Parikh, Linh H. Thanh
  • Patent number: 6635583
    Abstract: The present invention generally provides a process for depositing silicon carbide using a silane-based material with certain process parameters that is useful for forming a suitable ARC for IC applications. The same material may also be used as a barrier layer and an etch stop, even in complex damascene structures and with high diffusion conductors such as copper as a conductive material. Under certain process parameters, a fixed thickness of the silicon carbide may be used on a variety of thicknesses of underlying layers. The thickness of the silicon carbide ARC is substantially independent of the thickness of the underlying layer for a given reflectivity, in contrast to the typical need for adjustments in the ARC thickness for each underlying layer thickness to obtain a given reflectivity.
    Type: Grant
    Filed: December 23, 1998
    Date of Patent: October 21, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Christopher Bencher, Joe Feng, Mei-Yee Shek, Chris Ngai, Judy Huang
  • Patent number: 6562544
    Abstract: This invention provides a method and apparatus for depositing a silicon oxide film over an antireflective layer to reduce footing experienced in the a subsequently applied photoresist layer without substantially altering the optical qualities of the antireflective layer. The invention thereby provides more accurate etching of underlying layers during patterning operations. The invention is also capable of providing more accurate patterning of thin films by reducing inaccuracies caused by excessive etching of photoresist during patterning. Additionally, the film of the present invention may be patterned and used as a mask in the patterning of underlying layers.
    Type: Grant
    Filed: November 4, 1996
    Date of Patent: May 13, 2003
    Assignee: Applied Materials, Inc.
    Inventors: David Cheung, Joe Feng, Judy H. Huang, Wai-Fan Yau
  • Publication number: 20030030057
    Abstract: The present invention generally provides a process for depositing silicon carbide using a silane-based material with certain process parameters that is useful for forming a suitable ARC for IC applications. The same material may also be used as a barrier layer and an etch stop, even in complex damascene structures and with high diffusion conductors such as copper as a conductive material. Under certain process parameters, a fixed thickness of the silicon carbide may be used on a variety of thicknesses of underlying layers. The thickness of the silicon carbide ARC is substantially independent of the thickness of the underlying layer for a given reflectivity, in contrast to the typical need for adjustments in the ARC thickness for each underlying layer thickness to obtain a given reflectivity.
    Type: Application
    Filed: December 23, 1998
    Publication date: February 13, 2003
    Inventors: CHRISTOPHER BENCHER, JOE FENG, MEI-YEE SHEK, CHRIS NGAI, JUDY HUANG
  • Publication number: 20020133258
    Abstract: Embodiments of the present invention provide nitrogen doping of a fluorinated silicate glass (FSG) layer to improve adhesion between the nitrogen-containing FSG layer and other layers such as barrier layers. In some embodiments, a nitrogen-containing FSG layer is deposited on a substrate in a process chamber by supplying a gaseous mixture to the process chamber. The gaseous mixture comprises a silicon-containing gas, a fluorine-containing gas, an oxygen-containing gas, and a nitrogen-containing gas. Energy is provided to the gaseous mixture to deposit the nitrogen-containing FSG layer onto the substrate. A plasma may be formed from the gaseous mixture to deposit the layer. In some embodiments, an FSG film that has been formed is doped with nitrogen by a plasma treatment using a nitrogen-containing chemistry. For example, nitrogen ashing in a damascene process may introduce nitrogen dopants into the surface of the FSG layer.
    Type: Application
    Filed: January 12, 2001
    Publication date: September 19, 2002
    Applicant: Applied Materials. Inc.
    Inventors: Christopher Ngai, Christopher D. Bencher, Joe Feng, Peter Chen
  • Patent number: 6324439
    Abstract: This invention provides a stable process for depositing films which include silicon and nitrogen, such as antireflective coatings of silicon oxynitride. Nitrogen is employed to permit lower flow rates of the process gas containing silicon, thereby reducing the deposition rate and providing better control of film thickness. Additionally, the use of nitrogen stabilizes the process, improving film uniformity, and provides a higher-quality film. The invention is capable of providing more accurate and easier fabrication of structures requiring uniformly thin films containing silicon, nitrogen, and, optionally, oxygen, such as antireflective coatings.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: November 27, 2001
    Assignee: Applied Materials, Inc.
    Inventors: David Cheung, Joe Feng, Madhu Deshpande, Wai-Fan Yau, Judy H. Huang
  • Patent number: 6083852
    Abstract: This invention provides a stable process for depositing films which include silicon and nitrogen, such as antireflective coatings of silicon oxynitride. Nitrogen is employed to permit lower flow rates of the process gas containing silicon, thereby reducing the deposition rate and providing better control of film thickness. Additionally, the use of nitrogen stabilizes the process, improving film uniformity, and provides a higher-quality film. The invention is capable of providing more accurate and easier fabrication of structures requiring uniformly thin films containing silicon, nitrogen, and, optionally, oxygen, such as antireflective coatings.
    Type: Grant
    Filed: May 7, 1997
    Date of Patent: July 4, 2000
    Assignee: Applied Materials, Inc.
    Inventors: David Cheung, Joe Feng, Madhu Deshpande, Wai-Fan Yau, Judy H. Huang
  • Patent number: 5968324
    Abstract: A stable process for depositing an antireflective layer. Helium gas is used to lower the deposition rate of plasma-enhanced silane oxide, silane oxynitride, and silane nitride processes. Helium is also used to stabilize the process, so that different films can be deposited. The invention also provides conditions under which process parameters can be controlled to produce antireflective layers with varying optimum refractive index, absorptive index, and thickness for obtaining the desired optical behavior.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: October 19, 1999
    Assignee: Applied Materials, Inc.
    Inventors: David Cheung, Joe Feng, Judy H. Huang, Wai-Fan Yau